Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
Bài 1:
a) \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)
\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)
b) \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)
\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)
\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)
c) ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)
\(=1-a+a=1\)
1, ĐKXĐ: \(x>0;x\ne1\)
\(P=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-2}{\sqrt{x}}\cdot\frac{1-1+\sqrt{x}}{1-\sqrt{x}}\\ =\frac{3x+3\sqrt{x}-3-x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\\ =\frac{2x+3\sqrt{x}-4-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{2x+3\sqrt{x}-4-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x+3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
2, Để \(P=\sqrt{x}\) thì:
\(\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\sqrt{x}\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\\ \Leftrightarrow\sqrt{x}+3=x+\sqrt{x}-2\\ \Leftrightarrow x-5=0\Leftrightarrow x=5\left(t/m\right)\)
Vậy với \(x=5\) thì \(P=\sqrt{x}\).
Chúc bạn học tốt nha.
cảm ơn bạn nha