K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

1, ĐKXĐ: \(x>0;x\ne1\)

\(P=\frac{3x+3\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\frac{\sqrt{x}-2}{\sqrt{x}}\cdot\frac{1-1+\sqrt{x}}{1-\sqrt{x}}\\ =\frac{3x+3\sqrt{x}-3-x-1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}-2}{\sqrt{x}-1}\\ =\frac{2x+3\sqrt{x}-4-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{2x+3\sqrt{x}-4-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\\ =\frac{x+3\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

2, Để \(P=\sqrt{x}\) thì:

\(\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\sqrt{x}\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+3\right)=\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)\\ \Leftrightarrow\sqrt{x}+3=x+\sqrt{x}-2\\ \Leftrightarrow x-5=0\Leftrightarrow x=5\left(t/m\right)\)

Vậy với \(x=5\) thì \(P=\sqrt{x}\).

Chúc bạn học tốt nhaok.

27 tháng 7 2019

cảm ơn bạn nha

24 tháng 7 2017

a, dk \(x\ge0.x\ne1\)

\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)

 =\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)

phan b,c ban tu lam not nhe dai lam mk ko lam dau  mk co vc ban rui

11 tháng 7 2018

Bài 1:

a)  \(\frac{2}{\sqrt{3}-1}-\frac{2}{\sqrt{3}+1}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}-\frac{2\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}\)

\(=\frac{2\left(\sqrt{3}+1\right)}{2}-\frac{2\left(\sqrt{3}-1\right)}{2}\)

\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=2\)

b)   \(\frac{2}{5-\sqrt{3}}+\frac{3}{\sqrt{6}+\sqrt{3}}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{\left(5-\sqrt{3}\right)\left(5+\sqrt{3}\right)}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{\left(\sqrt{6}+\sqrt{3}\right)\left(\sqrt{6}-\sqrt{3}\right)}\)

\(=\frac{2\left(5+\sqrt{3}\right)}{2}+\frac{3\left(\sqrt{6}-\sqrt{3}\right)}{3}\)

\(=5+\sqrt{3}+\sqrt{6}-\sqrt{3}=5+\sqrt{6}\)

c)  ĐK:  \(a\ge0;a\ne1\)

  \(\left(1+\frac{a+\sqrt{a}}{1+\sqrt{a}}\right).\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{1+\sqrt{a}}\right).\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)+a\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)+a\)

\(=1-a+a=1\)