Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Đặt \(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)
\(A>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)(có 100 phân số)
\(A>\frac{1}{10}+\frac{1}{10}+\frac{1}{10}+...+\frac{1}{10}\)
\(A>\frac{100}{10}=10\left(đpcm\right)\)
2)\(A=\frac{\sqrt{x}-2010}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2011}{\sqrt{x+1}}=1-\frac{2011}{\sqrt{x}+1}\)
Để A đạt giá trị nhỏ nhất thì
\(1-\frac{2011}{\sqrt{x}+1}\) đạt GTNN
\(\Leftrightarrow\frac{2011}{\sqrt{x}+1}\) đạt GTLN
\(\Leftrightarrow\sqrt{x}+1\) đạt GTNN
\(\Leftrightarrow\sqrt{x}\) đạt GTNN
\(\Leftrightarrow x=0\)
\(\Rightarrow MIN_A=\frac{-2010}{1}=-2010\)
GTLN của P=1/2+0=1/2=>x=0
GTLN của Q=5-2.0=5=>x=1
Ta có: \(\sqrt{x}\ge0\)
\(\Rightarrow\frac{1}{2}+\sqrt{x}\ge\frac{1}{2}\)
Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Ta có: \(\sqrt{x-1}\ge0\)
\(\Leftrightarrow2\sqrt{x-1}\ge0\)
\(\Leftrightarrow-2\sqrt{x-1}\le0\)
\(\Leftrightarrow7-2\sqrt{x-1}\le7\)
Vậy \(Q_{max}=7\Leftrightarrow\sqrt{x-1}=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(A=\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\)
Ta có \(\left(x+\frac{4}{7}\right)^{24}\ge0\forall x\Rightarrow\left(x+\frac{4}{7}\right)^{24}+\frac{-12}{293}\ge\frac{-12}{293}\)
Đẳng thức xảy ra <=> x + 4/7 = 0 => x = -4/7
=> MinA = -12/293 <=> x = -4/7
\(B=-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)^{422}+5,98\)
Ta có \(\hept{\begin{cases}-\left(x+\frac{1}{6}\right)^{26}\le0\forall x\\-\left(x+y+\frac{3}{8}\right)^{442}\le0\forall x,y\end{cases}}\Rightarrow-\left(x+\frac{1}{6}\right)^{26}-\left(x+y+\frac{3}{8}\right)+5,98\le5,98\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{6}=0\\x+y+\frac{3}{8}=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{1}{6}\\y=-\frac{5}{24}\end{cases}}\)
=> MaxB = 5, 98 <=> x = -1/6 ; y = -5/24