Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)
\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)
Thiết lập hai BĐT còn lại tương tự và cộng theo vế:
\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)
\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)
Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)
Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)
\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)
Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)
\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)
Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)
1,theo giả thiết => \(x^2+y^2+z^2=x+y+z\)
mà \(3\left(x^2+y^2+z^2\right)>=\left(x+y+z\right)^2\)(bunhiacopxki)
=>\(x+y+z=< 3\)
ta có:\(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}>=\frac{9}{x+y+z+6}=1\)(cauchy schwarz)
Áp dụng BĐT AM-GM:
\(\frac{x+1}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\frac{y\left(x+1\right)}{2}=x+1-\frac{xy+y}{2}\)
TƯơng tự cho 2 BĐT còn lại rồi coojgn theo vế:
\(Q\ge x+y+z+3-\frac{xy+yz+xz+x+y+z}{2}\)
\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}\ge3\)
"=" <=> x=y=z=1
\(\frac{x+1}{1+y^2}=\frac{\left(x+1\right)\left(1+y^2\right)-y^2\left(x+1\right)}{1+y^2}=x+1-\frac{y^2\left(x+1\right)}{1+y^2}\)
TT...
\(\Rightarrow Q=x+y+z+3-\frac{y^2\left(x+1\right)}{1+y^2}-\frac{z^2\left(y+1\right)}{1+z^2}-\frac{x^2\left(1+z\right)}{1+x^2}\)
\(\ge6-\frac{y^2\left(x+1\right)}{2y}-\frac{z^2\left(y+1\right)}{2z}-\frac{x^2\left(z+1\right)}{2x}=6-\frac{xy+yz+xz+x+y+z}{2}\)
\(=6-\frac{3+xy+yz+xz}{2}\ge6-\frac{3+\frac{\left(x+y+z\right)^2}{3}}{2}=6-\frac{3+\frac{3^2}{3}}{2}=3\)
Vậy GTNN của Q là 3 khi x = y = z = 1
\(a+b+c=1\)
\(P=\frac{a}{b^2+c^2}+\frac{b}{a^2+c^2}+\frac{c}{a^2+b^2}\)
Cao nhân nào giải được bài này chưa