Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(P=\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+2xy+y}{1-xy}\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1-xy+x+2xy+y}{1-xy}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}\cdot\dfrac{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}{x+xy+y+1}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)
Đk:\(xy\ne1;x\ge0;y\ge0\)
\(P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1-xy+x+y+2xy}{1-xy}\)
\(=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1+x+y+xy}{1-xy}\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{\left(1+x\right)\left(1+y\right)}{1-xy}\)\(=\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}.\dfrac{1-xy}{\left(1+x\right)\left(1+y\right)}=\dfrac{2\sqrt{x}}{1+x}\)
b) Áp dụng AM-GM có:
\(1+x\ge2\sqrt{x}\Leftrightarrow\)\(\dfrac{2\sqrt{x}}{1+x}\le1\)
Dấu "=" xảy ra khi x=1 (tm)
Vậy \(P_{max}=1\)
Lời giải:
a) ĐK: $x\geq 0; y\geq 0; x\neq y$
\(A=\left[\frac{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}{\sqrt{x}-\sqrt{y}}-\frac{(\sqrt{x}-\sqrt{y})(x+\sqrt{xy}+y)}{(\sqrt{x}-\sqrt{y})(\sqrt{x}+\sqrt{y})}\right]:\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(=\frac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b) \(1-A=\frac{(\sqrt{x}-\sqrt{y})^2}{x-\sqrt{xy}+y}>0\) với mọi $x\neq y; x,y\geq 0$
$\Rightarrow A< 1$
\(C=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{x-1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}+1-2}{x-1}\right)\)
\(=\left(\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(x-1\right)}\right):\left(\dfrac{1}{\sqrt{x}+1}\right)\)
\(=\dfrac{\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}+1\right)=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Ta có: \(C=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)
\(=\left(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)^2}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\left(\dfrac{\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\)
\(=\dfrac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
d) Ta có: \(D=\left(\sqrt{x}+\dfrac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\dfrac{x}{\sqrt{xy}+y}+\dfrac{y}{\sqrt{xy}-x}-\dfrac{x+y}{\sqrt{xy}}\right)\)
\(=\left(\dfrac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\dfrac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\dfrac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\dfrac{\left(x+y\right)\left(x-y\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}-y\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\)
\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{xy}\cdot\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{-\sqrt{xy}\left(x+y\right)}\)
\(=-1\)
\(F=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y}{xy}\cdot\dfrac{1}{\left(\sqrt{x}+\sqrt{y}\right)^2}+\dfrac{2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}:\left[\dfrac{x+y+2\sqrt{xy}}{xy\left(\sqrt{x}+\sqrt{y}\right)^2}\right]\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{xy\sqrt{xy}}\cdot xy=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{xy}}\)
1.
\(\sqrt{\dfrac{x-1+\sqrt{2x-3}}{x+2-\sqrt{2x+3}}}\Leftrightarrow\)\(\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\sqrt{\dfrac{\left(\sqrt{2x-3}+1\right)^2}{\left(\sqrt{2x+3}-1\right)^2}}\end{matrix}\right.\)\(\Leftrightarrow\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{2x-3}+1}{\sqrt{2x+3}-1}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\left(\sqrt{2x-3}+1\right)\left(\sqrt{2x+3}+1\right)}{2\left(x+1\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{2}\\\dfrac{\sqrt{4x^2-9}+\sqrt{2x-3}+\sqrt{2x+3}+1}{2\left(x+1\right)}\end{matrix}\right.\)
hết tối giải rồi
a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)
b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)
c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
a) \(P=\dfrac{x}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)}-\dfrac{y}{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{x}\right)}-\dfrac{xy}{\left(\sqrt{x}+1\right)\left(1-\sqrt{y}\right)}\)
ĐK: \(\left\{{}\begin{matrix}x\ge0;y\ge0\\\sqrt{x}+\sqrt{y}\ne0\\\sqrt{x}+1\ne0\\1-\sqrt{y}\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0;y\ge0\\x^2+y^2>0\\y\ne1\end{matrix}\right.\)
\(P=\dfrac{x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{y\left(1-\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}-\dfrac{xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{x\sqrt{x}+x-y+y\sqrt{y}-xy\sqrt{x}-xy\sqrt{y}}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{\left(x\sqrt{x}+y\sqrt{y}\right)+\left(x-y\right)-\left(xy\sqrt{x}+xy\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)+\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)-xy\left(\sqrt{x}+\sqrt{y}\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y+\sqrt{x}-\sqrt{y}-xy\right)}{\left(\sqrt{x}+\sqrt{y}\right)\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{\left(x-xy\right)+\left(-\sqrt{y}+y\right)+\left(\sqrt{x}-\sqrt{xy}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{x\left(1-y\right)-\sqrt{y}\left(1-\sqrt{y}\right)+\sqrt{x}\left(1-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{x\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)-\sqrt{y}\left(1-\sqrt{y}\right)+\sqrt{x}\left(1-\sqrt{y}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{\left(1-\sqrt{y}\right)\left(x+x\sqrt{y}-\sqrt{y}+\sqrt{x}\right)}{\left(1-\sqrt{y}\right)\left(\sqrt{x}+1\right)}\)
\(P=\dfrac{x+x\sqrt{y}-\sqrt{y}+\sqrt{x}}{\sqrt{x}+1}\)
\(P=\dfrac{\left(x+\sqrt{x}\right)+\left(x\sqrt{y}-\sqrt{y}\right)}{\sqrt{x}+1}\)
\(P=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{y}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+\sqrt{xy}-\sqrt{y}\right)}{\sqrt{x}+1}\)
\(P=\sqrt{x}+\sqrt{xy}-\sqrt{y}\)
b) \(P=2\) khi:
\(\sqrt{x}+\sqrt{xy}-\sqrt{y}=2\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{y}+1\right)-\sqrt{y}-1=2-1\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{y}+1\right)-\left(\sqrt{y}+1\right)=1\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{y}+1\right)=1\)
Mà: x,y là nguyên \(\Rightarrow\sqrt{x}-1,\sqrt{y}+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Mặt khác: \(\sqrt{y}+1\ge1\) nên ta có:
\(\sqrt{y}+1=1\Leftrightarrow y=0\) (tm)
\(\Rightarrow\sqrt{x}-1=1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\) (tm)
Vậy: \(\left(x;y\right)=\left(4;0\right)\)