\(P=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)

Tìm \(max\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

Để có cho sẵn điều kiện ko bn? Bài này nếu đặt điều kiện x > 0 thì chưa hợp lí lắm ...

18 tháng 6 2018

ĐK : x > 1\(P\sqrt{x}=\dfrac{x}{\sqrt{x}-1}=\dfrac{x-1+1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}=\sqrt{x}+1+\dfrac{1}{\sqrt{x}-1}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}+2\)Áp dụng BĐT Cauchy , ta được :

\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\)\(2\sqrt{\left(\sqrt{x}-1\right).\dfrac{1}{\sqrt{x}-1}}=2\)

\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\) + 2 ≥ 2 + 2 = 4

\(P\sqrt{x}_{Min}=4\)\(\sqrt{x}-1=\dfrac{1}{\sqrt{x}-1}\)\(x=4\)


31 tháng 5 2019

c) Cho \(P(x)=100x^{100}+99x^{99}+98x^{98}+...+2x^2+x\).Tính P(-1)

10 tháng 8 2018

a,Điều kiện:x\(\ge\)0;x\(\ne\)1

=\(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)\(\times\)\(\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

=\(\dfrac{\sqrt{x}-1_{ }}{\sqrt{x}}\)

b,<=>\(\dfrac{\sqrt{x}_{ }-1}{\sqrt{x}}\)=\(\dfrac{1}{3}\)

<=>3\(\sqrt{x}\)-3=\(\sqrt{x}\)

<=>2\(\sqrt{x}\)=3

<=>x=9/4

8 tháng 3 2020

c/\(P=\frac{\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}}{1-\frac{x+2}{x+\sqrt{x}+1}}\)\(\Leftrightarrow P=\frac{2\left(\sqrt{x}-1\right)}{x\sqrt{x}-1}:\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

\(\Leftrightarrow\frac{2\left(x+\sqrt{x}+1\right)}{x\sqrt{x}-1}\)

Xét P-1 ta có \(\frac{2x+2\sqrt[]{x}+2-x\sqrt{x}+1}{x\sqrt{x}-1}=\frac{2x+2\sqrt{x}-x\sqrt{x}+3}{x\sqrt{x}-1}\)

với x<1 thì tử dương, mẫu âm, với x>1 thì tử âm và mẫu dương

Từ đó ta luuon có P-1\(\le0\RightarrowĐPCM\)

8 tháng 3 2020

a/\(\Leftrightarrow x=\frac{5-\sqrt{5}}{1-\sqrt{5}}+\frac{5+\sqrt{5}}{1+\sqrt{5}}-\frac{25-5}{1-5}-1\)

\(\Leftrightarrow x=0+5-1\Leftrightarrow x=4\)

Thay vào B đc \(B=\frac{4+2}{4+2+1}=\frac{6}{7}\)

b/

Sorry thiếu với \(\forall m\inℝ\)

với cả  : P(x) = ax2 + bx +c , a khác 0