K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(P\in Z\)

=>căn x+2-2 chia hết cho căn x+2

=>căn x+2 thuộc Ư(-2)

=>căn x+2=2

=>x=0

b: \(P=\dfrac{\sqrt{x}+2-2}{\sqrt{x}+2}=1-\dfrac{2}{\sqrt{x}+2}\)

căn x+2>=2

=>2/căn x+2<=1

=>-2/căn x+2>=-1

=>P>=0

Dấu = xảy ra khi x=0

11 tháng 10 2021

a: Để A nguyên thì \(\sqrt{x}-3⋮\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3\right\}\)

hay \(x\in\left\{0;1;9\right\}\)

3 tháng 6 2023

a) \(P=\left(3-\dfrac{3}{\sqrt{x}-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

\(=\left(\dfrac{3\left(\sqrt{x}-1\right)-3}{\sqrt{x}-1}\right):\left[\dfrac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x+2}\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right]\)

\(=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}:\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{3\sqrt{x}-6}{\sqrt{x}-1}.\left(\sqrt{x}-1\right)\)

\(=3\sqrt{x}-6\)

b) \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)

\(\Leftrightarrow3\sqrt{x}-6=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)   (1)

ĐKXĐ: \(x>0\)

\(\left(1\right)\Leftrightarrow3x-6\sqrt{x}=4\sqrt{x}-1\)

\(\Leftrightarrow3x-6\sqrt{x}-4\sqrt{x}+1=0\)

\(\Leftrightarrow3x-10\sqrt{x}+1=0\)   (2)

Đặt \(t=\sqrt{x}\ge0\)

\(\left(2\right)\Leftrightarrow3t^2-10t+1=0\)

\(\Delta'=25-4=22\)

Phương trình có hai nghiệm phân biệt:

\(t_1=\dfrac{5+\sqrt{22}}{3}\) (nhận)

\(t_2=\dfrac{5-\sqrt{22}}{3}\) (nhận)

Với \(t=\dfrac{5+\sqrt{22}}{3}\) \(\Leftrightarrow\sqrt{x}=\dfrac{5+\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47+10\sqrt{22}}{9}\) (nhận)

Với \(t=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow\sqrt{x}=\dfrac{5-\sqrt{22}}{3}\Leftrightarrow x=\dfrac{47-10\sqrt{22}}{9}\) (nhận)

Vậy \(x=\dfrac{47+10\sqrt{22}}{9};x=\dfrac{47-10\sqrt{22}}{9}\) thì \(P=\dfrac{4\sqrt{x}-1}{\sqrt{x}}\)

a: \(P=\dfrac{3\sqrt{x}-3-3}{\sqrt{x}-1}:\dfrac{x+2-x+\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=3\sqrt{x}-6\)

b: P=(4căn x-1)/căn x

=>3x-6căn x-4căn x+1=0

=>3x-10căn x+1=0

=>x=(47+10căn 22)/9 hoặc x=(47-10căn 22)/9

12 tháng 9 2021

\(a,M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}-\dfrac{2-x}{x\sqrt{x}+x}\right)\left(x>0;x\ne1\right)\\ M=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2-2+x}{x\left(\sqrt{x}+1\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\\ M=\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(b,M=-\dfrac{1}{2}\Leftrightarrow\dfrac{2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=-\dfrac{1}{2}\\ \Leftrightarrow-4x=x+\sqrt{x}-2\\ \Leftrightarrow5x+\sqrt{x}-2=0\)

Đặt \(\sqrt{x}=t\)

\(\Leftrightarrow5t^2+t-2=0\\ \Delta=1^2-4\cdot5\left(-2\right)=41\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-1-\sqrt{41}}{10}\\t=\dfrac{-1+\sqrt{41}}{10}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\left(1+\sqrt{41}\right)^2}{100}=\dfrac{-42-2\sqrt{41}}{100}\\x=\dfrac{\left(\sqrt{41}-1\right)^2}{100}=\dfrac{42-2\sqrt{41}}{100}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-21-\sqrt{41}}{50}\left(L\right)\\x=\dfrac{21-\sqrt{41}}{50}\left(N\right)\end{matrix}\right.\\ \Leftrightarrow x=\dfrac{21-\sqrt{41}}{50}\)

a: Ta có: \(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\dfrac{2}{x}+\dfrac{x-2}{x\sqrt{x}+x}\right)\)

\(=\dfrac{x+\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{2\sqrt{x}+2+x-2}{x\left(\sqrt{x}+1\right)}\)

\(=\dfrac{2x}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{2x\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

24 tháng 6 2021

a) đk: x\(\ge0\);

P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P = \(\dfrac{8}{9}\)

<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)

<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)

<=> \(-2x+5\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

c)

Đặt \(\sqrt{x}=a\) (\(a\ge0\))

P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)

Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)

Dấu "=" <=> a = -1 (loại)

=> Không tìm được Min của P

Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)

<=> \(P\le\dfrac{4}{3}\)

Dấu "=" <=> a = 1 <=> x = 1 (tm)

24 tháng 6 2021

Ai bảo cậu là không tìm được minP vậy?

AH
Akai Haruma
Giáo viên
17 tháng 11 2021

Lời giải:
a. \(B=\frac{3(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}-\frac{\sqrt{x}+5}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{3(\sqrt{x}+1)-(\sqrt{x}+5)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{2}{\sqrt{x}+1}\)

b.

\(P=2AB+\sqrt{x}=2.\frac{\sqrt{x}+1}{\sqrt{x}+2}.\frac{2}{\sqrt{x}+1}+\sqrt{x}=\frac{4}{\sqrt{x}+2}+\sqrt{x}\)

Áp dụng BĐT Cô-si:

$P=\frac{4}{\sqrt{x}+2}+(\sqrt{x}+2)-2\geq 2\sqrt{4}-2=2$

Vậy $P_{\min}=2$ khi $\sqrt{x}+2=2\Leftrightarrow x=0$

1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)

\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)

\(\Leftrightarrow x+2\sqrt{x}-3=0\)

\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\left(nhận\right)\)

2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)

\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)

\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)