\(\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

a)Rút...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)

\(=a+\sqrt{a}-2\sqrt{a}\)

\(=a-\sqrt{a}\)

5 tháng 7 2021

b)\(P=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)

Vậy \(P_{min}=-\dfrac{1}{4}\)

Này, mình nói bạn Thịnh là bài này mk nghĩ ý b bạn vẫn làm được mà bạn chỉ làm mỗi ý a là sao? Làm ý a bỏ ý b hả, zì kì thế

5 tháng 7 2021

a) ĐK:\(x\ge0;x\ne9\)

\(P=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

b)\(P=-\dfrac{3}{\sqrt{x}+3}\) 

Có \(\sqrt{x}+3\ge3;\forall x\ge0\)

\(\Leftrightarrow-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{1}{3}\)

\(P_{min}=-\dfrac{1}{3}\Leftrightarrow x=0\)

a) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

27 tháng 11 2018

\(Q=\frac{\sqrt{x}\cdot\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\cdot\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(Q=x+1\)

Không thể tìm được GTLN hay GTNN của Q.

b)

   \(\frac{3x+3}{\sqrt{x}}=3\sqrt{x}+\frac{3}{\sqrt{x}}\)

Để \(\frac{3Q}{\sqrt{x}}\) nguyên thì \(\frac{3}{\sqrt{x}}\)nguyên hay \(\sqrt{x}\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Vì \(\sqrt{x}\)dương nên \(\sqrt{x}\in\left\{1;3\right\}\)

Vậy x=1, x=9 là các giá trị cần tìm

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

6 tháng 7 2021

a) \(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\left(a>0\right)\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)

b) Ta có: \(a-\sqrt{a}=a-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(\ge-\dfrac{1}{4}\)

\(\Rightarrow P_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)

27 tháng 11 2018

\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1

=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)

\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)

Em thay vào tính nhé!

c) với x>1

A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)

Áp dụng bất đẳng thức Cosi 

A\(\ge2\sqrt{2}+3\)

Xét dấu bằng xảy ra ....

27 tháng 11 2018

dấu bằng xảy ra khi nào v ạ ??

31 tháng 8 2016

a) \(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\left(ĐK:a\ge0\right)\)

\(=\frac{\sqrt{a}\left(a\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=a+\sqrt{a}-2\sqrt{a}-1+1=a-\sqrt{a}\)

b) Để A=2 \(\Leftrightarrow a-\sqrt{a}=2\)

                  \(\Leftrightarrow a-\sqrt{a}-2=0\)

                   \(\Leftrightarrow\left(\sqrt{a}+1\right)\left(\sqrt{a}-2\right)=0\)

                   \(\Leftrightarrow\sqrt{a}-2=0\left(Vì\sqrt{a}+1\ne0\right)\)

                   \(\Leftrightarrow a=4\) (TM)

Vậy a=4 thì A=2

c) \(A=a-\sqrt{a}=a-\sqrt{a}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\)

Vì: \(\left(\sqrt{a}-\frac{1}{2}\right)^2\ge0\)

=> \(\left(\sqrt{a}-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy GTNN của A là \(-\frac{1}{4}\) khi \(a=\frac{1}{4}\)

31 tháng 8 2016

hay nhở