Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn!
ĐKXĐ: \(x\ge0;x\ne1\)
\(P=\dfrac{3x-2\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\dfrac{\left(2\sqrt{x}+2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-2\sqrt{x}-4-x+1-2x-6\sqrt{x}-4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{-8\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
Đề bài có vẻ không hợp lý
a) ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
\(=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
\(=\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}-1}=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)
\(=\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)
b) \(P=\sqrt{x}-1\Rightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\Rightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(\Rightarrow4\sqrt{x}=x-1\Rightarrow x-4\sqrt{x}-1=0\)
\(\Delta=\left(-4\right)^2-4.\left(-1\right)=20\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{4-2\sqrt{5}}{2}=2-\sqrt{5}\\\sqrt{x}=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{4+2\sqrt{5}}{2}=2+\sqrt{5}\end{matrix}\right.\)
mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}=2+\sqrt{5}\Rightarrow x=9+4\sqrt{5}\)
c) \(P=\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\dfrac{4\left(\sqrt{x}+1\right)-4}{\sqrt{x}+1}=4-\dfrac{4}{\sqrt{x}+1}\)
Để \(P\in Z\Rightarrow4⋮\sqrt{x}+1\Rightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\left(\sqrt{x}+1\ge1\right)\)
\(\Rightarrow x\in\left\{0;1;9\right\}\) mà \(x\ne1\Rightarrow x\in\left\{0;9\right\}\)
Từ khúc có \(x-4\sqrt{x}-1=0\)
Ta có: \(\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=4-5=-1\)
Thế vào \(\Rightarrow x-4\sqrt{x}+\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=0\)
\(\Rightarrow x-\sqrt{x}\left(2-\sqrt{5}+2+\sqrt{5}\right)+\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=0\)
\(\Rightarrow x-\left(2-\sqrt{5}\right)\sqrt{x}-\left(2+\sqrt{5}\right)\sqrt{x}+\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=0\)
\(\Rightarrow\sqrt{x}\left(\sqrt{x}-\left(2-\sqrt{5}\right)\right)-\left(2+\sqrt{5}\right)\left(\sqrt{x}-\left(2-\sqrt{5}\right)\right)=0\)
\(\Rightarrow\left(\sqrt{x}-\left(2-\sqrt{5}\right)\right)\left(\sqrt{x}-\left(2+\sqrt{5}\right)\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\\\sqrt{x}=2+\sqrt{5}\end{matrix}\right.\) rồi khúc sau như trên
a: \(P=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-7\sqrt{x}-3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}+3}\)
a) Ta có: \(P=\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,9\right)\)
\(=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}\)
\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
b) \(\sqrt{x}=\sqrt{6+4\sqrt{2}}=\sqrt{\left(2+\sqrt{2}\right)^2}=2+\sqrt{2}\)
\(\Rightarrow Q=\dfrac{2+\sqrt{2}+1}{2+\sqrt{2}-3}=\dfrac{3+\sqrt{2}}{\sqrt{2}-1}=\dfrac{\left(3+\sqrt{2}\right)\left(\sqrt{2}+1\right)}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)
\(=4\sqrt{2}+5\)
c) \(Q=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}=1+\dfrac{4}{\sqrt{x}-3}\)
Để \(Q\in Z\Rightarrow4⋮\sqrt{x}-3\Rightarrow\sqrt{x}-3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{4;5;7;2;1\right\}\Rightarrow x\in\left\{16;25;49;4;1\right\}\)
a) Ta có: \(Q=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
a: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{2\sqrt{x}-2-\sqrt{x}+3}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
a, \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)ĐK : \(x\ge0;x\ne4\)
\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b, Ta có :
\(P=2\Rightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\Rightarrow3\sqrt{x}=2\sqrt{x}+4\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)( tmđk )
Vậy P = 2 thì x = 16
a) ĐK: x ≥ 0; x ≠ 9; x≠4
P= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{x-5\sqrt{x}+6}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
= \(\left(\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\right):\left(\dfrac{x+2}{\sqrt{x}-3}-\dfrac{x^2-\sqrt{x}-6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\right)\)
=\(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{\left(x+2\right)\left(x-2\right)-x^2+\sqrt{x}+6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-4+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{x^2-4-x^2+\sqrt{x}+6}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}:\dfrac{\sqrt{x}+2}{\left(x-2\right)\left(\sqrt{x}-3\right)}\)
=\(\dfrac{x-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}.\dfrac{\left(x-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}+2}\)
=\(\dfrac{\left(x-1\right)\left(x-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\dfrac{x^2-3x+2}{x-4}\)
b) P ≤ -2
⇒ \(\dfrac{x^2-3x+2}{x-4}\) ≤ -2
⇔ \(\dfrac{x^2-3x+2}{x-4}\) + 2 ≤ 0
⇔ \(\dfrac{x^2-3x+2+2\left(x-4\right)}{x-4}\) ≤ 0
⇔ \(\dfrac{x^2-3x+2+2x-8}{x-4}\) ≤ 0
⇔\(\dfrac{x^2-x-6}{x-4}\) ≤ 0
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-x-6\ge0\\x-4< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-x-6\le0\\x-4>0\end{matrix}\right.\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x\le2\\3\le x< 4\end{matrix}\right.\)
Vậy.......
a) \(P=\dfrac{3x+3\sqrt{x}-9}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\left(x\ge0,x\ne1\right)\)
\(=\dfrac{3x+3\sqrt{x}-9}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\dfrac{3x+3\sqrt{x}-9+\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+8\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)
b) \(P=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}=\dfrac{3\sqrt{x}+6+2}{\sqrt{x}+2}=3+\dfrac{2}{\sqrt{x}+2}\)
Để \(P\in Z\Rightarrow2⋮\sqrt{x}+2\Rightarrow\sqrt{x}+2=2\left(\sqrt{x}+2\ge2\right)\)
\(\Rightarrow x=0\)
c) Ta có: \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+2\ge2\Rightarrow\dfrac{2}{\sqrt{x}+2}\le1\Rightarrow3+\dfrac{2}{\sqrt{x}+2}\le4\)
\(\Rightarrow P_{max}=4\) khi \(x=0\)