Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cậu xem đúng thì k y' = x^2 -(2m+1)x+3m+2. Để hs nghịch biến trong 1 khoản có độ dài > 1 thì y'=0 phải có 2 nghiệm phân biệt x1, x2 sao cho |x2-x1| >1 (lúc này thì y' =<0 trong khoản 2 nghiệm [x1, x2] tức là y nghịch biến trong đoạn [x1,x2])
<=> có hệ
(1) y'=0 có 2 nghiệm x1, x2
(2) |x2-x1| > 1 <=> (x2-x1)^2 -1>0 <=> (x1+x2)^2 - 4.x1.x2 -1 >0
mk mới hok lớp 8 nên cái tay bó tay!!! ^^
346456454574575675756768797835153453443457657656565
\(A=\dfrac{x+\sqrt{x}+10+\sqrt{x}+3}{x-9}=\dfrac{x+2\sqrt{x}+13}{x-9}\)
Để A>B thì A-B>0
=>\(\dfrac{x+2\sqrt{x}+13}{x-9}-\sqrt{x}-1>0\)
=>\(\dfrac{x+2\sqrt{x}+13-\left(x-9\right)\left(\sqrt{x}+1\right)}{x-9}>0\)
=>\(\dfrac{x+2\sqrt{x}+13-x\sqrt{x}-x+9\sqrt{x}+9}{x-9}>0\)
=>\(\dfrac{-x\sqrt{x}+11\sqrt{x}+22}{x-9}>0\)
TH1: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22>0\\x-9>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}< 4.05\\x>9\end{matrix}\right.\Leftrightarrow9< x< 16.4025\)
TH2: \(\left\{{}\begin{matrix}-x\sqrt{x}+11\sqrt{x}+22< 0\\x-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>4.05\\0< x< 9\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
\(\sqrt{-\left|3-x\right|}\)
Để căn thức trên có nghĩa thì :
\(\sqrt{-\left|3-x\right|}\)\(\ge0\)
Để căn thức trên có nghĩa.
Mà căn của 1 số ko thể âm.
=>-|3-x| dương hoặc =0.
Loại trường hợp dương vì GTTĐ của 1 số ko thể nhỏ hơn 0.
=>-|3-x|=0.
=>|3-x|=0.
=>3-x=0.
=>x=3.
Vậy x=3
\(a,P=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\cdot\left(\dfrac{\sqrt{x}+2}{2}\right)^2\left(x\ge0;x\ne4\right)\\ P=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\\ P=\dfrac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
\(b,\)Ta có \(x=6-2\sqrt{5}=\left(\sqrt{5}-1\right)^2\)
Thay vào \(P\), ta được:
\(P=\dfrac{\sqrt{\left(\sqrt{5}-1\right)^2}+2}{\sqrt{\left(\sqrt{5}-1\right)^2}-2}=\dfrac{\sqrt{5}-1+2}{\sqrt{5}-1-2}=\dfrac{\sqrt{5}+1}{\sqrt{5}-3}\)
\(c,\)Để \(P< 1\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-2}-1< 0\\ \Leftrightarrow\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\sqrt{x}-2}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-2}< 0\\ \Leftrightarrow\sqrt{x}-2< 0\left(4>0\right)\\ \Leftrightarrow\sqrt{x}< 2\\ \Leftrightarrow x< 4\)
Vậy để \(P< 1\) thì \(x< 4\)
Tick nha
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-2}-\dfrac{1}{\sqrt{x}+2}\right)\cdot\left(\dfrac{\sqrt{x}+2}{2}\right)^2\)
\(=\dfrac{\sqrt{x}+2-\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}+2\right)^2}{4}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-2}\)
b: Thay \(x=6-2\sqrt{5}\) vào P, ta được:
\(P=\dfrac{\sqrt{5}+1+2}{\sqrt{5}+1-2}=\dfrac{3+\sqrt{5}}{\sqrt{5}+1}=\dfrac{1+\sqrt{5}}{2}\)
Ta có
\(P=\frac{\sqrt{x}-1}{\sqrt{x}}>0\Rightarrow\sqrt{x}-1>0\Leftrightarrow x>1\)vì \(\sqrt{x}\ge0\)