K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

đường thẳng \(d^'\)và \(d\)cắt nhau tại một điểm A trên trục tung nên điểm A có hoành độ \(x_a=0\)và tạo độ A thỏa mãn phương trình \(d^'\)nên :\(\Rightarrow y_a=-2.0+1=1\)\(\Rightarrow A\left(0;1\right)\)Mà do a là giao điểm của 2 đường \(d;d^'\)nên toạn độ A cũng thỏa mãn phương trình của \(d\)\(\Rightarrow1=-m^2+m+1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow m\orbr{\begin{cases}m=0\\m=1\end{cases}}\)

câu b :

Xét phương trình hoành độ gia điểm của P và d có :

\(x^2=2mx-m^2+m+1\Leftrightarrow x^2-2mx+m^2-m-1=0\)

để hai đồ thị cắt nhau tại 2 điểm phân biệt thì \(\Delta^'=m^2+m^2-m-1=2m^2-m-1>0\)

\(\left(m-1\right)\left(2m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -\frac{1}{2}\\m>1\end{cases}}@\)

khi đó theo vieet có :\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=-m^2+m+1\end{cases}}\)

\(\Rightarrow y_1+y_2+2\left(x_1+x_2\right)=22\)với \(y_1=x^2_1;y_2=x_2^2\)

\(\Rightarrow\left(\left(x_1+x_2\right)^2-2x_1.x_2\right)+\left(x_1+x_2\right)2=22\)thay vieet ta có :

\(\left(2m\right)^2-2\left(-m^2+m+1\right)+2.2m=22\)

\(\Leftrightarrow6m^2+2m-24=0\Leftrightarrow\orbr{\begin{cases}m=\frac{-1+\sqrt{144}}{6}\\m=\frac{-1-\sqrt{144}}{6}\end{cases}}\)thỏa mãn @ 

Kết luận nghiệm

tính denta sai rùi rùi bạn ơi 

phải là 145 chứ ko phải 144 

4 tháng 5 2021

m = +- 5

 

 

8 tháng 5 2021

ghi hộ cách lm dc ko?

 

29 tháng 3 2017

Đáp án D

3 tháng 6 2017
  1. xét phương trình hoành độ giao điểm :  \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên  phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và B
  2. Có viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)

nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)

  • \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)
  • \(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
28 tháng 2 2019

2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )

a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?

b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.

Tìm m sao cho: OH2 + OK2 = 6     mọi người hướng dẫ mk ý b vs

a: Sửa đề; (d): y=x-m+3

Khi m=1 thì (d): y=x-1+3=x+2

PTHĐGĐ là:

x^2=x+2

=>x^2-x-2=0

=>(x-2)(x+1)=0

=>x=2 hoặc x=-1

Khi x=2 thì y=2^2=4

Khi x=-1 thì y=(-1)^2=1

b: PTHĐGĐ là:

x^2-x+m-3=0

Δ=(-1)^2-4(m-3)

=1-4m+12=-4m+13

Để (d) cắt (P) tại hai điểm phân biệt thì -4m+13>0

=>m<13/4

c: y1+y2=3

=>x1^2+x2^2=3

=>(x1+x2)^2-2x1x2=3

=>1-2(m-3)=3

=>2(m-3)=-2

=>m-3=-1

=>m=2(nhận)

13 tháng 12 2017

Đáp án C