Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xem lại đầu bài đi bạn ơi, phương trình đường thẳng sai rồi ...

Xét phương trình hoành độ giao điểm
\(x^2=2mx+2\Leftrightarrow x^2-2mx-2=0\Rightarrow\Delta^'=m^2+2\ge2\)
Vậy P luôn cắt (d) tại 2 điểm phân biệt là A,B . giả sử phương trình có 2 nghiệm là \(x_2,x_1\). ta có
\(A\left(x_1,x_1^2\right)\Rightarrow OA=\sqrt{x_1^2+x_{ }_1^4}\);\(B\left(x_2,x_2^2\right)\Rightarrow OB=\sqrt{x_2^2+x_2^4}\)
theo giả thiết ta có :\(S=\frac{1}{2}OA.OB\Rightarrow\sqrt{x_1^2+x_1^4}.\sqrt{x^2_2+x^4_2}=4\sqrt{6}\)
\(\Leftrightarrow\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(x_1^2+x^2_2\right)+\left(x_1x_2\right)^4=96\)
\(\left(x_1x_2\right)^2+\left(x_1x_2\right)^2\left(-2x_2x_1+\left(x_1+x_2\right)^2\right)+\left(x_1x_2\right)^4=96\)
Theo vi ét\(\Rightarrow\hept{\begin{cases}x_1+x_2=2m\\x_1x=-2_2\end{cases}}\)\(4+4.\left(4+4m^2\right)+16=96\Leftrightarrow m^2=\frac{15}{4}\Rightarrow\orbr{\begin{cases}m=\frac{\sqrt{15}}{2}\\m=\frac{-\sqrt{15}}{2}\end{cases}}\)

a, Với m = -1 thì \(\hept{\begin{cases}\left(P\right)y=-x^2\\\left(d\right)y=x-2\end{cases}}\)
Tọa độ giao điểm của (d) và (P) là nghiệm của hệ phương trình :
\(\hept{\begin{cases}y=-x^2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}-x^2=x-2\\y=x-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2+x-2=0\\y=x-2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}\left(h\right)\hept{\begin{cases}x=-2\\y=-4\end{cases}}}\)
Vậy tọa độ giao điểm (d) và (P) với m = -1 là (1;-1) ; (-2;-4)
b, Phương trình hoành độ giao điểm của (d) và (P) là
\(mx^2=\left(m+2\right)x+m-1\)
\(\Leftrightarrow mx^2-\left(m+2\right)x-m+1=0\)
Vì m khác 0 nên pt trên là pt bậc 2
Khi đó \(\Delta=\left[-\left(m+2\right)\right]^2-4m\left(-m+1\right)\)
\(=m^2+4m+4+4m^2-4m\)
\(=5m^2+4>0\)
Nên pt trên luôn có 2 nghiệm p/b
hay (d) luôn cắt (P) tại 2 điểm phân biệt với m khác 0

Phương trình hoành độ giao điểm của (P) và (d) : \(\frac{1}{4}.x^2=mx+1\) (1)
<=> x2 = 4mx + 4 <=> x2 - 4mx - 4 = 0
\(\Delta\)' = (-2m)2 + 4 = 4m2 + 4 \(\ge\) 4 > 0 với mọi m
=> (1) luôn có 2 nghiệm phân biệt
Vậy (P) luôn cắt (d) tại 2 điểm phân biệt
b) Gọi 2 nghiệm đó là x1; x2
Theo hệ thức Vi ét có:
x1 + x2 = 4m
x1 x2 = - 4 < 0
=> x1; x2 trái dấu .
A; B là 2 giao điểm => A (x1; mx1 + 1); B(x2; mx2 + 1) . Giả sử x1 < 0 < x2
+) A; B nằm về hai phía của trục tung do x1; x2 trái dấu .
Gọi H; K lần lượt là hình chiếu của A; B xuống Ox => H(x1; 0); K(x2; 0)
Khi đó S OAB = S AHKB - SAHO - SBKO
S AHKB = (AH + BK). HK : 2 = (mx1 + 1 +mx2 + 1 ) .(- x1 + x2) : 2 = \(\frac{\left(m\left(x_1+x_2\right)+2\right)\left(x_2-x_1\right)}{2}=\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)
SAHO = AH.HO : 2 = (mx1 + 1). (-x1) : 2 = \(\frac{-mx^2_1-x_1}{2}\)
SBKO = BK.KO : 2 = (mx2 + 1). x2 : 2 = \(\frac{mx^2_2+x_2}{2}\)
Vậy SOAB = \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)- \(\frac{-mx^2_1-x_1}{2}\) - \(\frac{mx^2_2+x_2}{2}\)
= \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)+m\left(x_1^2-x_2^2\right)+x_1-x_2}{2}=\frac{x_2-x_1}{2}\)
ta có: \(\left(x_2-x_1\right)^2=x_2^2-2x_2x_1+x_1^2=\left(x_1+x_2\right)^2-4x_1.x_2\)
= (4m)2 - 4.(-4) = 16m2 + 16
=> x2 - x1 = \(\sqrt{16m^2+16}=4.\sqrt{m^2+1}\)
Vậy SOAB = \(4.\sqrt{m^2+1}\)
CÁI ĐỀ NÀY
AI GIÚP TÔI ĐƯỢC KHÔNG CHIỀU MAI TỚ PHẢI NỘP ÙI PLEASE~~~~~!!
BÀI 3:Xác định tham số m để hàm số y=(m^2 - 4)x-5 nghịch biến
Xác định tham số m để hàm số y=(m^2 - 1)x+2 đồng biến với mọi x>0
BÀI 6 Cho đường thẳng (d) y=-x+2 và parabol P y=1/2.x^2
a)tìm giá trị m để điểm M(m;m-1) nằm trên (d).Với m vừa tìm được chứng tỏ điểm M không thuộc P
b) vẽ P và (d) trên cùng mặt phẳng tọa độ và tìm tọa độ giao điểm của
chúng
BÀI 4:
TRONG mặt phẳng tọa độ Oxy , cho parabol P: y=-x^2
a) vẽ đồ thị P
b) gọi A và B là hai điểm thuộc P có hoành độ lần lượt là 1 , -2 .Lập phuơng trình đường thẳng AB
c) tìm phương trình đường thẳng (d) song song với đường thẳng AB và tiếp xúc với P

Lời giải:
PT hoành độ giao điểm:
$x^2-(m-3)x-m+4=0(*)$
Để (d) và (P) cắt nhau tại hai điểm phân biệt $A(x_1,y_1)$ và $B(x_2,y_2)$ thì PT $(*)$ có 2 nghiệm $x_1,x_2$ phân biệt
Điều này xảy ra khi $\Delta=(m-3)^2+4(m-4)>0$
$\Leftrightarrow m^2-2m-7>0\Leftrightarrow m> 2\sqrt{2}+1$ hoặc $m< 1-2\sqrt{2}$
Áp dụng định lý Viet: $x_1+x_2=m-3$ và $x_1x_2=-m+4$
Để tam giác $OAB$ vuông tại $O$ thì:
$OA^2+OB^2=AB^2$
$\Leftrightarrow x_1^2+y_1^2+x_2^2+y_2^2=(x_1-x_2)^2+(y_1-y_2)^2$
$\Leftrightarrow x_1x_2+y_1y_2=0$
$\Leftrightarrow x_1x_2+(x_1x_2)^2=0$
$\Leftrightarrow x_1x_2(x_1x_2+1)=0$
$\Leftrightarrow x_1x_2=0$ hoặc $x_1x_2=-1$
$\Leftrightarrow -m+4=0$ hoặc $-m+4=-1$
$\Leftrightarrow m=4$ hoặc $m=5$ (đều thỏa mãn)

a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
Phương trình hoành độ giao điểm: \(x^2-mx-2=0\) (1)
Do \(ac=-2< 0\) nên \(d\) luôn cắt (P) tại 2 điểm phân biệt có hoành độ là nghiệm của (1)
Không mất tính tổng quát, giả sử \(x_A< x_B\), gọi C và D lần lượt là 2 điểm trên Ox sao cho \(\left\{{}\begin{matrix}x_C=x_A\\x_D=x_B\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}AC\perp OC\\BD\perp OD\\\widehat{AOC}+\widehat{BOD}=90^0\end{matrix}\right.\)
\(\Rightarrow tan\widehat{AOC}=cot\widehat{BOD}\Rightarrow\dfrac{AC}{OC}=\dfrac{OD}{BD}\)
\(\Rightarrow\dfrac{y_A-y_C}{x_O-x_C}=\dfrac{x_D-x_O}{y_B-y_D}\Leftrightarrow\dfrac{x_A^2}{-x_A}=\dfrac{x_B}{x_B^2}\Leftrightarrow x_Ax_B=-1\) (trái ngược với Viet có \(x_Ax_B=-2\))
\(\Rightarrow\) không tồn tại m thỏa mãn
cảm ơn bạn nhìu