Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này giải như số ý, kết luận khác chút.
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=\left(k-1\right)x+4\)
\(\Leftrightarrow x^2-\left(k-1\right)x-4=0\)
( a = 1; b = - (k-1); c = -4 )
\(\Delta=b^2-4ac\)
\(=\left[-\left(k-1\right)\right]^2-4.1.\left(-4\right)\)
\(=\left(k-1\right)^2+16>0\forall k\)
Vậy: (P) và (d) luôn cắt nhau tại 2 điểm phân biệt
Theo Vi-et ta có: \(\hept{\begin{cases}S=y_1+y_2=-\frac{b}{a}=k-1\\P=y_1y_2=\frac{c}{a}=-4\end{cases}}\)
Ta có: \(y_1+y_2=y_1y_2\)
\(\Leftrightarrow S=P\)
\(\Leftrightarrow k-1=-4\)
\(\Leftrightarrow k=-3\left(TMĐK\right)\)
Vậy: k = -3 là giá trị cần tìm
![](https://rs.olm.vn/images/avt/0.png?1311)
a: k=-2 nên (d): y=-3x+4
PTHĐGĐ là:
\(x^2+3x-4=0\)
=>(x+4)(x-1)=0
=>x=-4 hoặc x=1
Khi x=-4 thì y=16
Khi x=1 thì y=1
b: Phương trình hoành độ giao điểm là:
\(x^2-\left(k-1\right)x-4=0\)
a=1; b=-k+1; c=-4
Vì ac<0nên (P) luôn cắt (d) tại hai điểm phân biệt
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
![](https://rs.olm.vn/images/avt/0.png?1311)
- a) Thay x=-1;y=3 vào (d) ta có: 3=(m+2)-1-m+6 <=>-m-2-m+6=3 <=>-2m=-1 <=>m=1/2.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ptrinh hoành độ giao điểm : \(\frac{1}{2}x^2-mx+m-2=0\)
\(\Delta=m^2-4\cdot\frac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\)
Theo viet : \(\hept{\begin{cases}x_1+x_2=\frac{m}{\frac{1}{2}}=2m\\x_1.x_2=\frac{m-2}{\frac{1}{2}}=2m-4\end{cases}}\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m\right)^2-2.\left(2m-4\right)=4m^2-4m+8\)
Có : \(y_1+y_2=\frac{1}{2}x_1^2+\frac{1}{2}x_2^2=\frac{1}{2}\left(x_1^2+x_2^2\right)=\frac{1}{2}\left(4m^2-4m+8\right)\)
\(\Rightarrow2m^2-2m+4=8\)
=> \(m^2-m-2=0\)
=> \(\orbr{\begin{cases}m=2\\m=-1\end{cases}}\)
vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
pthdgd
x^2-mx-2=0
∆=m^2+2>o moi m
c/a=-2<0
=>x1<0<x2 moi m => dpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương trình hoành độ giao điểm:
x2 = 2x - m
<=> x2 - 2x + m = 0
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)
<=> (-1)2 - m > 0
<=> 1 - m > 0
<=> m < 1
Ta có: y1 = x12
y2 = x22
y1 + y2 + x12x22 = 6(x1 + x2)
<=> x12 + x22 + x12x22 = 6(x1 + x2)
<=> (x1 + x2)2 - 2x1x2 + (x1x2)2 = 6(x1 + x2)
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
<=> 22 - 2m + m2 = 6.2
<=> 4 - 2m + m2 = 12
<=> 4 - 2m + m2 - 12 = 0
<=> m2 - 2m - 8 = 0
<=> m = 4 (ktm) hoặc m = -2 (tm)
=> m = -2
![](https://rs.olm.vn/images/avt/0.png?1311)
Giao điểm của 2 hàm số là nghiệm của phương trình:
x2=2mx-2m+3 <=> x2-2mx+2m-3=0 (1)
\(\Delta'=m^2-2m+3=m^2-2m+1+2=\left(m-1\right)^2+2\ge2\)Với mọi m
=> Phương trình luôn có 2 nghiệm phân biệt.
Gọi x1 và x2 là 2 nghiệm của phương trình. Ta có: y1=x12 ; y2=x22
=> y1+y2=x12+x22 =(x1+x2)2-2x1.x2
Xét phương trình (1). Theo định lý Vi-et ta có:
x1+x2=-b/a=2m
x1.x2=c/a=2m-3
=> y1+y2=(x1+x2)2-2x1.x2 = (2m)2-2(2m-3)=4m2-4m+6
y1+y2 < 9 <=> 4m2-4m+6 < 9 <=> 4m2-4m-3 < 0
<=> 4m2-4m+1-4<0 <=> (2m-1)2-4 < 0 <=> (2m-1-2)(2m-1+2) < 0
<=> (2m-3)(2m+1) < 0 => -1/2 < m < 3/2
Đáp số: Với -1/2 < m < 3/2 thì giao điểm của 2 đồ thị thỏa mãn điều kiện y1+y2 < 9
a) Phương trình hoành độ giao điểm của (d) và (P) là
\(x^2=\left(m-1\right)x+4\Leftrightarrow x^2-\left(m-1\right)x-4=0\)
Ta có \(\Delta=\left(m-1\right)^2-4.\left(-4\right)=\left(m-1\right)^2+16\)
Vì \(\left(m-1\right)^2\ge0\forall m\Rightarrow\left(m-1\right)^2+16>0\forall m\)hay \(\Delta>0\)
Suy ra phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt với mọi giá trị của m
Do đó đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt với mọi m
(hoặc lập luận cho ac=1.(-4)<0 nên có 2 nghiệm phân biệt ...)
b) Theo chứng minh ý a thì phương trình hoành độ giao điểm luôn có 2 nghiệm phân biệt , áp dụng hệ thức Vi-ét:
\(\hept{\begin{cases}x_1+x_2=m-1\\x_1x_2=-4\end{cases}}\)
Khi đó : \(y_1+y_2=y_1.y_2\Leftrightarrow x_1^2+x_2^2=x_1^2.x_2^2\)( có cái này là do parabol P y=x^2)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=\left(x_1x_2\right)^2\Leftrightarrow\left(m-1\right)^2-2.\left(-4\right)=\left(-4\right)^2\)
\(\Leftrightarrow\left(m-1\right)^2=8\Leftrightarrow\orbr{\begin{cases}m-1=2\sqrt{2}\\m-1=-2\sqrt{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\sqrt{2}+1\\m=1-2\sqrt{2}\end{cases}}\)
Vậy...........................
a/
hoành độ giao điểm của (d) và ( p ) là nghiệm của phương trình
\(x^2-\left(m-1\right)x-4=0\)
den ta = \(\left(m-1\right)^2+16>0\forall m\)
=> phương trình luôn có 2 nghiệm phân biệt với mọi m
b/
vì \(y_1,y_2\) là tung độ giao điểm của (d ) và ( p )
=> \(y_1=x_1^2\)
\(y_2=x_2^2\)
theo vi - ét có \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-4\end{cases}}\)
ta có \(y_1+y_2=y_1.y_2\)
<=> \(x_1^2+x_2^2=x_1^2x_2^2\)
<=> \(\left(x_2+x_{ }_1\right)^2-2x_1x_2-x_1^2.x_2^2=0\)
<=> \(\left(m-1\right)^2-2.\left(-4\right)-\left(-4\right)^2=0\)
<=> \(m^2-2m+1+8-16=0\)
<=> \(m^2-2m-7=0\)
<=>\(\left(m-1\right)^2-8=0\)
<=> \(\left(m-1\right)^2=8\)
<=> \(m-1=2\sqrt{2}\left(h\right)m-1=-2\sqrt{2}\)
<=> \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
vậy \(m=2\sqrt{2}+1\left(h\right)m=1-2\sqrt{2}\)
CHÚC BẠN HỌC TỐT