Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
\(x^2-2\left(m+1\right)x+m^2+2m=0\)
\(\Delta'=\left(m+1\right)^2-\left(m^2+2m\right)=1\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt \(\left\{{}\begin{matrix}x_1=m+1+1=m+2\\x_2=m\end{matrix}\right.\)
\(2x_1+x_2=5\Leftrightarrow3m+4=5\Rightarrow m=\frac{1}{3}\)
Hoặc \(\left\{{}\begin{matrix}x_1=m\\x_2=m+2\end{matrix}\right.\)
\(\Rightarrow2x_1+x_2=5\Leftrightarrow3m+2=5\Leftrightarrow m=1\)
a) Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình: \(x^2-2\left(m+1\right)x+2m=0\)
\(\Delta'=\left(m+1\right)^2-2m=m^2+1>0,\forall m\) (vì \(m^2\ge0\))
=> (P) và (d) cắt nhau tại 2 điểm phân biệt với mọi m
b) Theo định lí Vi-ét: \(S=x_1+x_2=2\left(m+1\right)=2m+2\)
\(x_1^2-x_2^2=x_1-x_2\)
\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=x_1-x_2\)
\(\Leftrightarrow x_1+x_2=1\Leftrightarrow2m+2=1\Leftrightarrow m=-\frac{1}{2}\)
Vậy \(m=-\frac{1}{2}\) thỏa mãn đề bài
a, Thay m = -1/2 vào (d) ta được :
\(y=2x-2.\left(-\frac{1}{2}\right)+2\Rightarrow y=2x+3\)
Hoành độ giao điểm thỏa mãn phương trình
\(2x+3=x^2\Leftrightarrow x^2-2x-3=0\)
\(\Delta=4-4\left(-3\right)=4+12=16>0\)
\(x_1=\frac{2-4}{2}=-1;x_2=\frac{2+4}{2}=3\)
Vói x = -1 thì \(y=-2+3=1\)
Vớ x = 3 thì \(y=6+3=9\)
Vậy tọa độ giao điểm của 2 điểm là A ( -1 ; 1 ) ; B ( 3 ; 9 )
b, mình chưa học
\(y_1+y_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow x_1^2+x_2^2=4\left(x_1+x_2\right)\)(1)
Xét phương trình hoành độ giao điểm của (d) và (P) ta có:
\(x^2=2x-2m+2\)
\(\Leftrightarrow x^2-2x+2m-2=0\)
Theo hệ thức Vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-2\end{cases}}\)
Từ (1) \(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\left(x_1+x_2\right)\)
\(\Leftrightarrow4-4m+4=8\)
\(\Leftrightarrow m=0\)
vậy..
a/ Để \(d\) qua \(I\left(1;3\right)\)
\(\Rightarrow3=2\left(m-1\right).1+m^2+2m\)
\(\Leftrightarrow m^2+4m-5=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-5\end{matrix}\right.\)
b/ Phương trình hoành độ giao điểm d và (P):
\(x^2-2\left(m-1\right)x-m^2-2m=0\) (1)
\(\Delta'=\left(m-1\right)^2+m^2+2m=2m^2+1>0\) \(\forall m\)
Vậy pt (1) luôn có 2 nghiệm pb \(\Rightarrow d\) luôn cắt (P) tại 2 điểm phân biệt
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{matrix}\right.\)
\(x_1^2+x_2^2+2x_1x_2+4x_1x_2>2016\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+4x_1x_2-2016>0\)
\(\Leftrightarrow4\left(m-1\right)^2+4\left(-m^2-2m\right)-2016>0\)
\(\Leftrightarrow-16m-2012>0\)
\(\Rightarrow m< \frac{-503}{4}\)
`a)` Phương trình hoành độ của `(P)` và `(d)` là:
`x^2=(2m+2)x-m-2m`
`<=>x^2-2(m+1)x+3m=0` `(1)`
`(P)` cắt `(d)` tại `2` điểm `A,B<=>` Ptr `(1)` có `2` nghiệm phân biệt
`=>\Delta' > 0`
`<=>(m+1)^2-3m > 0`
`<=>m^2+2m+1-3m > 0`
`<=>m^2-m+1 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=3m):}`
Ta có: `{(2x_1+x_2=5),(x_1+x_2=2m+2):}`
`<=>{(x_1=3-2m),(3-2m+x_2=2m+2):}`
`<=>{(x_1=3-2m),(x_2=4m-1):}`
Thay vào `x_1.x_2=3m`
`=>(3-2m)(4m-1)=3m`
`<=>12m-3-8m^2+2m=3m`
`<=>8m^2-11m+3=0`
`<=>(m-1)(8m-3)=0<=>[(m=1),(m=3/8):}`
câu b đâu bạn