Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (d): y=ax+b
Vì (d) đi qua A(0;-2,5) và Q(1,5;3,5)
nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}a\cdot0+b=-2,5\\1,5a+b=3,5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-2,5\\1,5a=3,5-b=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=-2,5\end{matrix}\right.\)
b: Theo đề, ta có hệ:
a+b=2 và 3a+b=6
=>-2a=-4 và a+b=2
=>a=2; b=0
Anh Vi Cá Đuối: Biểu thức A thì biến là $x,y$. Mà đề bài thì $x_1,x_2$???
vì a+b+c=0==> x=-(y+z) ==> \(x^2=\left(y+z\right)^2\)
<=> \(x^2=y^2+2yz+z^2\)
<=> \(x^2-y^2-z^2=2yz\)
<=> \(\left(x^2-y^2-z^2\right)^2=4y^2z^2\)
<=>\(x^4+y^4+z^4=2x^2y^2+2y^2z^2+2z^2x^2\)
<=> \(2\left(x^4+y^4+z^4\right)=\left(x^2+y^2+z^2\right)^2=a^4\)
==> \(x^4+y^4+z^4=\frac{a^4}{2}\)
Phương trình hoành độ giao điểm (d) và (P) là:
\(x^2=-\left(m+2\right)x-m-1\)
\(\Leftrightarrow x^2+\left(m+2\right)x+m+1=0\)(1)
Để (d) cắt (P) tại hai điểm phân biệt thì phương trình (1) có hai nghiêm phân biệt. Khi đó:
\(\Delta>0\Leftrightarrow\left(m+2\right)^2-4\left(m+1\right)=m^2>0\Leftrightarrow m\ne0\)
Với \(m\ne0\)phương trình (1) có hai nghiệm phân biệt \(x_1,x_2;x_1>x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m+1\end{cases}}\)
Do hai điểm nằm khác phía với trục tung nên \(x_1,x_2\)trái dấu nên \(m+1< 0\Leftrightarrow m< -1\).
\(\sqrt{y_1}+\sqrt{y_2}=\sqrt{x_1^2}+\sqrt{x_2^2}=\left|x_1\right|+\left|x_2\right|=x_1-x_2=2\)(do hai điểm nằm khác phía với trục tung)
\(\hept{\begin{cases}x_1+x_2=-m-2\\x_1-x_2=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x_1=\frac{-m}{2}\\x_2=\frac{-m-4}{2}\end{cases}}\)
\(x_1x_2=-\frac{m}{2}\left(\frac{-m-4}{2}\right)=\frac{m\left(m+4\right)}{4}=m+1\Leftrightarrow m=\pm2\).
Vậy \(m=-2\).