K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Khi m=3 thì (d); y=2x+3

Phương trình hoành độ giao điểm là:

x2-2x-3=0

=>(x-3)(x+1)=0

=>x=3 hoặc x=-1

Khi x=3 thì y=9

Khi x=-1thì y=1

b: PTHDGĐ là:

\(x^2-2x-m=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-m\right)=4m+4\)

Để (d) tiếp xúc với (P) thì 4m+4=0

=>m=-1

25 tháng 5 2020

giúp mình đi vẽ hộ cái hình

cho đường tròn tâm O bán kính r,điểm A cố định nằm ngoài đường tròn.kẻ 2 tiếp tuyến AM,AN.Đường thẳng D đi qua A cắt đường tròn O tại B,C với AB<AC.Chứng minh 5 điểm A,M,N,O,I thuộc đường tròn

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

b: Thay m=2 vào (d), ta được:

y=2x-2+1=2x-1

Phương trình hoành độ giao điểm là:

\(x^2=2x-1\)

=>\(x^2-2x+1=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=2x-m+1\)

=>\(x^2-2x+m-1=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

=4-4m+4

=-4m+8

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

y1,y2 thỏa mãn gì vậy bạn?

Bạn ghi rõ hơn được không?

d: y=-2x+m cái gì 1?

3 tháng 2 2021

1. Ta có đồ thị :

2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)

Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)

- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)

\(\Leftrightarrow m=-1\)

3. Có phương trình hoành độ giao điểm :

\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)

\(\Rightarrow x=1\)

\(\Rightarrow y=1\)

Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)

NV
30 tháng 3 2023

a. Em tự giải

b.

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=\left(m+2\right)x-m+3\Leftrightarrow x^2-\left(m+2\right)x+m-3=0\)

\(\Delta=\left(m+2\right)^2-4\left(m-3\right)=m^2+16>0;\forall m\)

(d) cắt (P) tại 2 điểm phân biệt với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m-3\end{matrix}\right.\)

\(x_1^2+x_2^2+x_1x_2\le5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-\left(m-3\right)\le5\)

\(\Leftrightarrow m^2+3m+2\le0\)

\(\Leftrightarrow\left(m+1\right)\left(m+2\right)\le0\)

\(\Rightarrow-2\le m\le-1\)

a: khi m=3 thì (d): y=5x

PTHĐGĐ là:

x^2=5x

=>x=0 hoặc x=5

=>y=0 hoặc y=25

b:

PTHĐGĐ là:

x^2-(m+2)x+m+3=0

Δ=(m+2)^2-4(m+3)

=m^2+4m+4-4m-12=m^2-8

Để (d) cắt (P) tại 2 điểm pb thì m^2-8>0

=>m>2 căn 2 hoặc m<-2 căn 2

x1^2+x2^2+x1x2<=5

=>(x1+x2)^2-x1x2<=5

=>(m+2)^2-m-3<=5

=>m^2+4m+4-m-3-5<=0

=>m^2+3m-4<=0

=>(m+4)(m-1)<=0

=>-4<=m<=1

b: Phương trình hoành độ giao điểm là:

\(\dfrac{-1}{2}x^2-4x+16=0\)

\(\Leftrightarrow x^2\cdot\dfrac{1}{2}+4x-16=0\)

\(\Leftrightarrow x^2+8x-32=0\)

\(\Leftrightarrow\left(x+4\right)^2=48\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\sqrt{3}-4\\x=-4\sqrt{3}-4\end{matrix}\right.\)

Khi \(x=4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\cdot\left(4\sqrt{3}-4\right)^2=-32+16\sqrt{3}\)

Khi \(x=-4\sqrt{3}-4\) thì \(y=\dfrac{-1}{2}\left(-4\sqrt{3}-4\right)^2=-32-16\sqrt{3}\)

b: Để hai đường song song thì

\(\left\{{}\begin{matrix}m-1=-1\\m+3< >1\end{matrix}\right.\Leftrightarrow m=0\)

21 tháng 11 2018

parabol (P): y =  x 2  ; đường thẳng (d): y = 2x + m (m là tham số).

a) phương trình hoành độ giao điểm của (P) và (d) là:

x 2  = 2x + m ⇔  x 2 - 2x - m = 0

Δ'= 1 + m

(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm

⇔ Δ'= 1 + m = 0 ⇔ m = -1

Khi đó hoành độ giao điểm là x = 1

17 tháng 5 2021

đơn giản vl