Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
x2 = 2x - m
<=> x2 - 2x + m = 0
Để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta>0\)
<=> (-1)2 - m > 0
<=> 1 - m > 0
<=> m < 1
Ta có: y1 = x12
y2 = x22
y1 + y2 + x12x22 = 6(x1 + x2)
<=> x12 + x22 + x12x22 = 6(x1 + x2)
<=> (x1 + x2)2 - 2x1x2 + (x1x2)2 = 6(x1 + x2)
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2\\x_1x_2=\frac{c}{a}=m\end{cases}}\)
<=> 22 - 2m + m2 = 6.2
<=> 4 - 2m + m2 = 12
<=> 4 - 2m + m2 - 12 = 0
<=> m2 - 2m - 8 = 0
<=> m = 4 (ktm) hoặc m = -2 (tm)
=> m = -2
Phương trình hoành độ giao điểm:
\(\frac{1}{2}x^2=-x+m\Leftrightarrow x^2+2x-2m=0\)
\(\Delta'=1+2m\ge0\Rightarrow m\ge-\frac{1}{2}\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-2m\end{matrix}\right.\)
\(x_1x_2+y_1y_2=5\Leftrightarrow x_1x_2+\frac{1}{4}\left(x_1x_2\right)^2=5\)
\(\Leftrightarrow\left(x_1x_2\right)^2+4x_1x_2-5=0\Rightarrow\left[{}\begin{matrix}x_1x_2=1\\x_1x_2=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2m=1\\-2m=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{1}{2}\\m=\frac{5}{2}\end{matrix}\right.\)
ĐK \(x_2\ge0;\)
Phương trình hoành độ giao điểm
x2 = mx + m + 1
\(\Leftrightarrow x^2-mx-m-1=0\)
Có \(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\ge0\)
\(\Rightarrow\)Phương trình có nghiệm với mọi m
Phương trình 2 nghiệm \(\hept{\begin{cases}x_1=\frac{m-\left|m+2\right|}{2}\\x_2=\frac{m+\left|m+2\right|}{2}\end{cases}}\)
Khi m + 2 < 0 thì x1 = m + 1 ; x2 = -1 (loại)
khi m + 2 \(\ge0\)thì x1 = -1 ; x2 = m + 1
\(\Rightarrow x_1=-1;x_2=m+1\)nghiệm phương trình
Khi đó ta có -1 + m - m = \(\sqrt{m+1}-\sqrt[3]{8}\)
\(\Leftrightarrow\sqrt{m+1}=1\Leftrightarrow m=0\)(tm)
Phương trình hoành độ giao điểm của (P) và (d) là :
\(x^2=2\left(m+3\right)x-m^2-3.\)
\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)
\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)
Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 ; x2 thì phương trình (1) có hai nghiệm phân biệt x1 x2.
\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)
Theo vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)
Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.
\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)
\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)
\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)
\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)
Vậy \(m=5\).
Phương trình hoành độ giao điểm:
\(x^2-2mx+m^2-1=0\)
\(\Delta'=m^2-m^2+1=1>0\)
Phương trình đã cho luôn có 2 nghiệm pb: \(\left\{{}\begin{matrix}x=m+1\\x=m-1\end{matrix}\right.\)
a/ TH1: \(\left\{{}\begin{matrix}x_1=m+1\\x_2=m-1\end{matrix}\right.\) \(\Rightarrow m+1-2\left(m-1\right)=0\Rightarrow m=...\)
TH2: \(\left\{{}\begin{matrix}x_1=m-1\\x_2=m+1\end{matrix}\right.\) \(\Rightarrow m-1-2\left(m+1\right)=0\Rightarrow m=...\)
b/ \(\left\{{}\begin{matrix}m-1>1\\m+1>1\end{matrix}\right.\) \(\Rightarrow m>2\)
2) Đẳng thức điều kiện tương đương với \(\left(1+a\right)\left(1+b\right)\left(1+c\right)=1\Rightarrow1+a,1+b,1+c\ne0\)
Ta có: \(S=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1}{1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)}\)\(+\frac{1}{1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)}\)
\(=\frac{1}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}+\frac{1+a}{\left(1+a\right)\left[1+\left(1+b\right)+\left(1+b\right)\left(1+c\right)\right]}\)\(+\frac{\left(1+a\right)\left(1+b\right)}{\left(1+a\right)\left(1+b\right)\text{[}1+\left(1+c\right)+\left(1+c\right)\left(1+a\right)\text{]}}=\frac{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}{1+\left(1+a\right)+\left(1+a\right)\left(1+b\right)}=1\)
Pt hoành độ giao điểm:
\(\frac{1}{2}x^2=-x+m\Leftrightarrow x^2+2x-2m=0\)
\(\Delta'=1+2m>0\Rightarrow m>-\frac{1}{2}\)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-2m\end{matrix}\right.\)
\(x_1x_2+y_1y_2=5\)
\(\Leftrightarrow x_1x_2+\frac{1}{4}x_1^2x_2^2=5\)
\(\Leftrightarrow\left(x_1x_2\right)^2+4x_1x_2-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1x_2=-2+2\sqrt{6}\\x_1x_2=-2-2\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2m=-2+2\sqrt{6}\\-2m=-2-2\sqrt{6}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\sqrt{6}-1\\m=\sqrt{6}+1\end{matrix}\right.\)