Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm là:
\(x^2+mx+\left(m+1\right)^2=-x^2-\left(m+2\right)x-2\left(m+1\right)\)
=>\(x^2+mx+\left(m+1\right)^2+x^2+\left(m+2\right)x+2\left(m+1\right)=0\)
=>\(2x^2+\left(2m+2\right)x+2\left(m+1\right)+\left(m+1\right)^2=0\)
=>\(2x^2+\left(2m+2\right)x+\left(m^2+4m+3\right)=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\cdot2\cdot\left(m^2+4m+3\right)\)
\(=4m^2+8m+4-8m^2-32m-24\)
\(=-4m^2-24m-20\)
\(=-4\left(m^2+6m+5\right)=-4\left(m+1\right)\left(m+5\right)\)
Để (P1) cắt (P2) tại hai điểm phân biệt thì Δ>0
=>\(-4\left(m+1\right)\left(m+5\right)>0\)
=>\(\left(m+1\right)\left(m+5\right)< 0\)
TH1: \(\left\{{}\begin{matrix}m+1>0\\m+5< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\)
=>Loại
TH2: \(\left\{{}\begin{matrix}m+1< 0\\m+5>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -1\\m>-5\end{matrix}\right.\)
=>-5<m<-1
Theo Vi-et, ta có: \(x_1+x_2=\dfrac{-\left(2m+2\right)}{2}=-m-1;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4m+3}{2}\)
\(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\)
\(=\left|\dfrac{m^2+4m+3}{2}-3\left(-m-1\right)\right|\)
\(=\left|\dfrac{m^2+4m+3}{2}+3m+3\right|\)
\(=\dfrac{\left|m^2+4m+3+6m+6\right|}{2}=\dfrac{\left|m^2+10m+9\right|}{2}\)
Biểu thức này không có giá trị lớn nhất nha bạn
vậy biểu thức này có tìm GTNN được không ạ?
nếu tìm được thì mong bạn giải giùm cho mình được không ạ???
a) Thay \({x_1} = - 1;{x_2} = 1\) vào \(y = {x^2}\) ta được:
\({y_1} = f\left( { - 1} \right) = {\left( { - 1} \right)^2} = 1\)
\({y_2} = f\left( 1 \right) = {1^2} = 1\)
b) Ta có \({x_1} = - 1;{y_1} = 1 \Rightarrow {M_1}\left( { - 1;1} \right)\)
Ta có: \({x_2} = 1;{y_2} = 1 \Rightarrow {M_2}\left( {1;1} \right)\)
Biểu diễn trên mặt phẳng:
Phương trình hoành độ giao điểm là:
\(x^2-2x+4=2mx-m^2\)
=>\(x^2-2x+4-2mx+m^2=0\)
=>\(x^2-x\left(2m+2\right)+m^2+4=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)
\(=4m^2+8m+4-4m^2-16=8m-12\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
=>8m-12>0
=>8m>12
=>\(m>\dfrac{3}{2}\)
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m-2\right)}{1}=2m+2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4}{1}=m^2+4\end{matrix}\right.\)
\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)
=>\(x_1^2+x_2\left(x_1+x_2\right)=3m^2+12+4\)
=>\(x_1^2+x_1\cdot x_2+x_2^2=3x_1x_2+4\)
=>\(x_1^2-2x_1x_2+x_2^2=4\)
=>\(\left(x_1-x_2\right)^2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=4\)
=>\(\left(2m+2\right)^2-4\left(m^2+4\right)=4\)
=>\(4m^2+8m+4-4m^2-16=4\)
=>8m-12=4
=>8m=16
=>m=2(nhận)
Đường thẳng AB đi qua điểm \(A\left( {{x_1};{y_1}} \right)\) có vectơ chỉ phương là \(\overrightarrow {{u_{AB}}} = \overrightarrow {AB} = \left( {{x_2} - {x_1};{y_2} - {y_1}} \right)\)
Do đó, AB có phương trình tham số là: \(\left\{ \begin{array}{l}x = {x_1} + \left( {{x_2} - {x_1}} \right)t\\y = {y_1} + \left( {{y_2} - {y_1}} \right)t\end{array} \right.\)
Chọn \(\overrightarrow {{n_{AB}}} = \left( {{y_2} - {y_1}; - \left( {{x_2} - {x_1}} \right)} \right)\), suy ra AB có phương trình tổng quát là:
\(\left( {{y_2} - {y_1}} \right)\left( {x - {x_1}} \right) - \left( {{x_2} - {x_1}} \right)\left( {y - {y_1}} \right) = 0\).
\(\hept{\begin{cases}x+\sqrt{y^2-x^2}=12-y\left(1\right)\\x\sqrt{y^2-x^2}=12\left(2\right)\end{cases}}\)
\(Đkxđ:y^2\ge x^2\)
Từ: \(\left(1\right)\Rightarrow x^2+2x\sqrt{y^2-x^2}+y^2-x^2=144-24y+y^2\)
\(\Leftrightarrow x\sqrt{y^2-x^2}=144-24y\left(3\right)\)
Thay: \(x\sqrt{y^2-x^2}=12\) vào \(\left(3\right)\)ta được: \(y=5\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\Rightarrow\left\{\left(3;5\right),\left(4;5\right)\right\}\)
Ta có: \(T=3^2+4^2-5^2=0\)
Vậy giá trị cỉa biểu thức \(T=0\)
Sửa đề: Sao cho biểu thức T đạt GTLN
Phương trình hoành độ giao điểm là:
\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)
=>\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)
=>\(x^2-\left(2m+2\right)x+2m^2+1=0\)
\(\text{Δ}=\left(2m+2\right)^2-4\left(2m^2+1\right)\)
\(=4m^2+8m+4-8m^2-4=-4m^2+8m\)
Để phương trình có hai nghiệm thì Δ>=0
=>\(-4m^2+8m>=0\)
=>\(-4\left(m^2-2m\right)>=0\)
=>\(m^2-2m< =0\)
=>\(m\left(m-2\right)< =0\)
TH1: \(\left\{{}\begin{matrix}m>=0\\m-2< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>=0\\m< =2\end{matrix}\right.\)
=>0<=m<=2
TH2: \(\left\{{}\begin{matrix}m< =0\\m-2>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< =0\\m>=2\end{matrix}\right.\)
=>Loại
\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)
\(a=\dfrac{1}{2};b=-\left(m+1\right);c=m^2+\dfrac{1}{2}\)
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{m+1}{\dfrac{1}{2}}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+\dfrac{1}{2}}{\dfrac{1}{2}}=2\left(m^2+\dfrac{1}{2}\right)=2m^2+1\end{matrix}\right.\)
\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)
\(=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-2m^2-1-2m-2\)
\(=\dfrac{1}{2}\left(x_1^2+x_2^2\right)-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[\left(2m+2\right)^2-2\left(2m^2+1\right)\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left[4m^2+8m+4-4m^2-2\right]-2m^2-2m-3\)
\(=\dfrac{1}{2}\left(8m+2\right)-2m^2-2m-3\)
\(=4m+1-2m^2-2m-3=-2m^2+2m-2\)
\(=-2\left(m^2-m+1\right)\)
\(=-2\left(m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-2\left[\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)
\(=-2\left(m-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}\)
Dấu '=' xảy ra khi m=1/2
Lời giải:
PT hoành độ giao điểm:
$\frac{1}{2}x^2-(m+1)x+m^2+\frac{1}{2}=0$
$\Leftrightarrow x^2-2(m+1)x+2m^2+1=0(*)$
Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ phải có 2 nghiệm pb
$\Leftrightarrow \Delta'=(m+1)^2-(2m^2+1)>0$
$\Leftrightarrow m(2-m)>0$
$\Leftrightarrow 0< m< 2$
Áp dụng định lý Viet:
$x_1+x_2=2m+2$
$x_1x_2=2m^2+1$
Khi đó:
$T=y_1+y_2-x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(x_1^2+x_2^2)-x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(x_1+x_2)^2-2x_1x_2-(x_1+x_2)$
$=\frac{1}{2}(2m+2)^2-2(2m^2+1)-(2m+2)$
$=-2m^2+2m-2$
Với điều kiện $0< m< 2$ thì biểu thức này không có min nhé. Bạn xem lại.