Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Phương trình hoành độ giao điểm của (P) và (d) là:
\(-x^2=mx-1\)
\(\Leftrightarrow-x^2-mx+1=0\)
a=-1; b=-m; c=1
Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m
2) Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)
Ta có: \(x_1^3+x_2^3=-4\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+4=0\)
\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)+4=0\)
\(\Leftrightarrow-m^3-3m+4=0\)
\(\Leftrightarrow m^3+3m-4=0\)
\(\Leftrightarrow m^3-m+4m-4=0\)
\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)
\(\Leftrightarrow m-1=0\)
hay m=1
a: Phương trình hoành độ giao điểm là:
\(x^2-mx+1=0\)
\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)
Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0
=>(m-2)(m+2)>0
hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
b: Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)
Theo đề, ta có:
\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)
\(\Leftrightarrow m-1=3\)
hay m=4
- xét phương trình hoành độ giao điểm : \(x^2=\left(2m-1\right)x-m+2\)\(\Leftrightarrow x^2-\left(2m-1\right)x+m-2=0\)có \(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=4m^2-8m+9=\left(2m-1\right)^2+8\ge8\)vậy nên phương trinh luôn có 2 nghiệm phân biệt tức hai đồ thị luôn cắt nhau tại 2 điểm phân biệt A và B
- Có viet : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=m-2\end{cases}}\)ta có : \(A\left(x_1,y_1\right)=A\left(x_1,x_1^2\right)\)và \(B\left(x_2,y_2\right)=B\left(x_2,x_2^2\right)\)
nên ta có : \(x_1y_1+x_2y_2=0\Leftrightarrow x_1^3+x_2^3=0\)\(\Leftrightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)=0\)\(\Leftrightarrow\left(2m-1\right)\left[\left(2m-1\right)^2-3m+6\right]=0\)
- \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)
- \(\left(2m-1\right)^2-3m+6=0\Leftrightarrow4m^2-7m-7=0\)VN
2. Cho parabol (P): y = x2 và đường thẳng (d): y = 2(m – 1)x + m2 + 2m (m là tham số, m ∈ R )
a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A, B?
b) Gọi H và K lần lượt là hình chiếu của A và B trên trục hoành.
Tìm m sao cho: OH2 + OK2 = 6 mọi người hướng dẫ mk ý b vs
Xét phương trình hoành độ giao điểm: x^2 = mx + 1 <=> x^2 - mx -1 = 0
\(\Delta\)= m^2 - 4 (-1) = m^2 + 4 > 0 \(\forall\)m
=> (d) luôn cắt (P) tại hai điểm phân biệt (đpcm)
Do đó: x1 = \(\frac{1}{2}\left(m+\sqrt{m^2+4}\right)\)
=> y1 = \(\frac{1}{4}\left(m^2+m^2+4+2m\sqrt{m^2+4}\right)=\frac{1}{2}\left(m^2+2+m\sqrt{m^2+4}\right)\)
Tương tự x2 = \(\frac{1}{2}\left(m-\sqrt{m^2+4}\right)\)=> y2 = \(\frac{1}{2}\left(m^2+2-m\sqrt{m^2+4}\right)\)
Thay y1, y2 vừa tìm đc vào biểu thức y1 + y2 + y1*y2 = 7 ta đc: \(m^2+4=7\)=> m = \(\pm\sqrt{3}\)
Tính lại hộ mình xem tìm m đã đúng chưa nhé :)) sợ lẫn lộn r tính sai :))
Xét phương trình : \(x^2 = mx + 1\) <=> \(x^2 - mx - 1 = 0\)
\(\Delta=\left(-m\right)^2-4\left(-1\right)=m^2+4>0\)\(\forall\)m
\(m^2\ge0\forall m\)=> (d) luôn cắt (P) tại hai điểm phân biệt
Theo Viet:\(\hept{\begin{cases}x_1+x_2=m\\x_1\times x_2=-1\end{cases}}\)
Giả sử 2 điểm phân biệt lần lượt là A(x1;y1) ; B(x2;y2)
Ta có: y1=x12 ; y2=x22
Theo bài : y1 + y2 + y1y2 = 7
<=> x12 + x22 + (x1x2)2 = 7
<=> (x1 +x2 )2 - 2x1x2 + (x1x2)2 = 7
<=> m2 + 2 + 1 = 7
<=> m2 = 7 - 3
<=> m2 = 4
=> m = \(\pm2\)
Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=mx+5\)
\(x^2-mx-5=0\)
\(\Delta=m^2+20\)
Vì \(\Delta>0\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt
Vậy đường thẳng (d) và (P) luôn cắt nhau tại 2 điểm phân biệt
Câu tìm m bạn ghi rõ đề ra nhá
b) Phương trình hoành độ giao điểm của d và (P): − x 2 = 2 m x − 1 ⇔ x 2 + 2 m x − 1 = 0
Phương trình (*) có ∆’ = m2 + 1 > 0 ⇒ (*) luôn có hai nghiệm phân biệt x1, x2 ∀ m hay d luôn cắt (P) tại hai điểm phân biệt.
Áp dụng Viét ta có x 1 + x 2 = − 2 m x 1 x 2 = − 1 ⇒ | x 1 − x 2 | = ( x 1 − x 2 ) 2 = ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 4 m 2 + 4 = 2 m 2 + 1
Khi đó ta có
y 1 = 2 m x 1 − 1 y 2 = 2 m x 2 − 1 ⇒ | y 1 2 − y 2 2 | = | ( 2 m x 1 − 1 ) 2 − ( 2 m x 2 − 1 ) 2 | ⇒ | y 1 2 − y 2 2 | = | ( 2 m x 1 − 1 − 2 m x 2 + 1 ) ( 2 m x 1 − 1 + 2 m x 2 − 1 ) | = | 4 m ( x 1 − x 2 ) [ m ( x 1 + x 2 ) − 1 ] | = | 4 m ( 2 m 2 + 1 ) ( x 1 − x 2 ) | = 4 m ( 2 m 2 + 1 ) | x 1 − x 2 | = 4 | m | ( 2 m 2 + 1 ) 2 m 2 + 1 Ta có: | y 1 2 − y 2 2 | = 3 5 ⇔ 64 m 2 ( 2 m 2 + 1 ) 2 ( m 2 + 1 ) = 45 ⇔ 64 ( 4 m 4 + 4 m 2 + 1 ) ( m 4 + m 2 ) = 45
Đặt: m 4 + m 2 = t ≥ 0 có phương trình 64 t ( 4 t + 1 ) = 45 ⇔ 256 t 2 + 64 t − 45 = 0 ⇔ t = 5 16 ( v ì t ≥ 0 ) ⇒ m 4 + m 2 = 5 16 ⇔ 16 m 4 + 16 m 2 − 5 = 0 ⇔ m = ± 1 2
Vậy m = ± 1 2
b. ta có PT hoành độ :
1/2 x2 = -mx+3
<=>x2+2mx-6=0