Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề (d) y=2(m-1)x+m^2+2m
a, đường thẳng d đi qua điểm M(1;3) => \(x_M=1;y_M=3\)
Ta có; \(y_M=2\left(m-1\right)x_M+m^2+2m\)
=>\(3=2\left(m-1\right).1+m^2+2m\)
<=>\(m^2+2m+2m-2-3=0\)
<=>\(m^2+4m-5=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=-5\end{cases}}\)
b, Phương trình hoành độ giao điểm của (P) và (d) :
\(x^2=2\left(m-1\right)x+m^2+2m\)
<=>\(x^2-2\left(m-1\right)x-m^2-2m=0\)(1)
\(\Delta'=\left[-\left(m-1\right)\right]^2-1.\left(-m^2-2m\right)=m^2-2m+1+m^2+2m=2m^2+1>0\)
Vậy pt (1) luôn có 2 nghiệm phân biệt => (d) luôn cắt (P) tại 2 điểm phân biệt A và B
c, Theo vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m^2-2m\end{cases}}\)
\(x_1^2+x_2^2+6x_1x_2>2017\)
<=> \(\left(x_1+x_2\right)^2+4x_1x_2-2017>0\)
<=>\(4\left(m-1\right)^2+4\left(-m^2-2m\right)-2017>0\)
<=>\(4m^2-8m+4-4m^2-8m-2017>0\)
<=>\(-16m-2013>0\)
<=>\(m< \frac{-2013}{16}\)
Xét phương trình hoành độ giao điểm ta có
\(x^2=\left(2m+1\right)x-2m\Leftrightarrow\left(x-2m\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m\end{cases}}\)
để p cắt d tại hai điểm phân biệt thì \(2m\ne1\Leftrightarrow m\ne\frac{1}{2}\).
ta có \(\hept{\begin{cases}x_1=1\Rightarrow y_1=x_1^2=1\\x_2=2m\Rightarrow y_2=x_2^2=4m^2\end{cases}}\)Vậy \(y_1+y_2-x_1x_2=1+4m^2-2m=1\Leftrightarrow4m^2-2m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{1}{2}\end{cases}}\)
Kết hợp điều kiện hai nghiệm phân biệt ta có m =0
Xét PT hoành độ giao điểm của (P) và (d)
x2=(2m+1)x-2m
⇔x2-(2m+1)x+2m=0
a=1; b=-2m-1; c=2m
a+b+c=a+(-2m-1)+2m=0 Nên PT (1) có 2 nghiệm
x1=1 và x2=2m
*) với x1=1 ⇒y1=1
*) với x2=2m ⇒y2=(2m)2=4m2
Thay x1, x2, y1, y2 vào y1+y2-x1x2=1, ta có:
1+4m2-2m=1
⇔4m2-2m=0⇔2m(2m-1)=0 ⇔m=0 và m=\(\dfrac{1}{2}\)
Vậy với m=0 và 1/2 thì ......
a/ Người đọc tự giải
b/ Phương trình hoành độ giao điểm:
\(-x^2=2mx-1\Leftrightarrow x^2+2mx-1=0\)
\(ac=-1< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu với mọi m hay d luôn cắt (p) tại 2 điểm phân biệt
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-1\end{matrix}\right.\)
\(\left|y_1^2-y_2^2\right|=3\sqrt{5}\)
\(\Leftrightarrow\left(y_1+y_2\right)^2\left(y_1-y_2\right)^2=45\)
\(\Leftrightarrow\left(2m\left(x_1+x_2\right)-2\right)^2\left(2m\left(x_1-x_2\right)\right)^2=45\)
\(\Leftrightarrow\left(4m^2+2\right)^2.4m^2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]=45\)
\(\Leftrightarrow\left(4m^2+2\right)^2.4m^2\left(4m^2+4\right)=45\)
Đặt \(4m^2+2=t\ge2\)
\(t^2\left(t-2\right)\left(t+2\right)=45\)
\(\Leftrightarrow t^2\left(t^2-4\right)-45=0\)
\(\Leftrightarrow t^4-4t^2-45=0\Rightarrow t^2=9\Rightarrow t=3\)
\(\Rightarrow4m^2+2=3\Rightarrow m=\pm\frac{1}{2}\)