K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2021

Lời giải:

PT hoành độ giao điểm:

$x^2-(m-3)x-m+4=0(*)$

Để (d) và (P) cắt nhau tại hai điểm phân biệt $A(x_1,y_1)$ và $B(x_2,y_2)$ thì PT $(*)$ có 2 nghiệm $x_1,x_2$ phân biệt

Điều này xảy ra khi $\Delta=(m-3)^2+4(m-4)>0$

$\Leftrightarrow m^2-2m-7>0\Leftrightarrow m> 2\sqrt{2}+1$ hoặc $m< 1-2\sqrt{2}$

Áp dụng định lý Viet: $x_1+x_2=m-3$ và $x_1x_2=-m+4$

Để tam giác $OAB$ vuông tại $O$ thì:

$OA^2+OB^2=AB^2$

$\Leftrightarrow x_1^2+y_1^2+x_2^2+y_2^2=(x_1-x_2)^2+(y_1-y_2)^2$

$\Leftrightarrow x_1x_2+y_1y_2=0$

$\Leftrightarrow x_1x_2+(x_1x_2)^2=0$

$\Leftrightarrow x_1x_2(x_1x_2+1)=0$

$\Leftrightarrow x_1x_2=0$ hoặc $x_1x_2=-1$

$\Leftrightarrow -m+4=0$ hoặc $-m+4=-1$ 

$\Leftrightarrow m=4$ hoặc $m=5$ (đều thỏa mãn)

22 tháng 2 2023

Cho mình hỏi tại sao y1y2 = (x1x2)^2

7 tháng 11 2017

Bài 3 làm sao v ạ?

8 tháng 4 2022

aPt hoành độ giao điểm là x2=mx+1

<=>x2-mx-1=0

\(_{\Delta}\)=m2-4(-1)=m2+4\(\ge0\)\(\forall m\inℝ\)

=>đpcm

b viet=>x1x2=-1 => A và B nằm ở hai hướng khác nhau

tính (d) giao trục OY tại K

=>Soab=(OK.x1+OK.x2)/2 sau đó tính ra

18 tháng 5 2015

Phương trình hoành độ giao điểm của (P) và (d) : \(\frac{1}{4}.x^2=mx+1\)  (1)

<=> x2 = 4mx + 4 <=> x2 - 4mx - 4 = 0

\(\Delta\)' = (-2m)2 + 4 = 4m2 + 4 \(\ge\) 4 > 0 với mọi m

=> (1) luôn có 2 nghiệm phân biệt 

Vậy (P) luôn cắt (d) tại 2 điểm  phân biệt

b) Gọi 2 nghiệm đó là x1; x2

Theo hệ thức Vi ét có: 

 x1 +  x2 = 4m

 x1 x2 = - 4 < 0

=>  x1; x trái dấu . 

A; B là 2 giao điểm => A (x1; mx1 + 1); B(x2; mx2 + 1) . Giả sử x1 < 0 < x2

+)  A; B nằm về hai phía của trục tung do  x1; x trái dấu . 

Gọi H; K lần lượt là hình chiếu của A; B xuống Ox => H(x1; 0); K(x2; 0)

Khi đó S OAB = S AHKB - SAHO - SBKO

S AHKB = (AH + BK). HK : 2 = (mx1 + 1 +mx2 + 1 ) .(- x1 + x2) : 2 = \(\frac{\left(m\left(x_1+x_2\right)+2\right)\left(x_2-x_1\right)}{2}=\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)

SAHO = AH.HO : 2 = (mx+ 1). (-x1) : 2  = \(\frac{-mx^2_1-x_1}{2}\)

SBKO = BK.KO : 2 = (mx2 + 1). x2 : 2 = \(\frac{mx^2_2+x_2}{2}\)

Vậy SOAB \(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)}{2}\)\(\frac{-mx^2_1-x_1}{2}\) - \(\frac{mx^2_2+x_2}{2}\)

\(\frac{m\left(x_2^2-x_1^2\right)+2.\left(x_2-x_1\right)+m\left(x_1^2-x_2^2\right)+x_1-x_2}{2}=\frac{x_2-x_1}{2}\)

ta có: \(\left(x_2-x_1\right)^2=x_2^2-2x_2x_1+x_1^2=\left(x_1+x_2\right)^2-4x_1.x_2\)

= (4m)2 - 4.(-4) = 16m2 + 16

=> x2 - x1 = \(\sqrt{16m^2+16}=4.\sqrt{m^2+1}\)

Vậy SOAB = \(4.\sqrt{m^2+1}\)

19 tháng 5 2015

 CÁI ĐỀ NÀY 
AI GIÚP TÔI ĐƯỢC KHÔNG CHIỀU MAI TỚ PHẢI NỘP ÙI PLEASE~~~~~!!

BÀI 3:Xác định tham số m để hàm số y=(m^2 - 4)x-5 nghịch biến
Xác định tham số m để hàm số y=(m^2 - 1)x+2 đồng biến với mọi x>0
BÀI 6 Cho đường thẳng (d) y=-x+2 và parabol P y=1/2.x^2 
a)tìm giá trị m để điểm M(m;m-1) nằm trên (d).Với m vừa tìm được chứng tỏ điểm M không thuộc P
b) vẽ P và (d) trên cùng mặt phẳng tọa độ và tìm tọa độ giao điểm của
chúng 
BÀI 4:
TRONG mặt phẳng tọa độ Oxy , cho parabol P: y=-x^2
a) vẽ đồ thị P
b) gọi A và B là hai điểm thuộc P có hoành độ lần lượt là 1 , -2 .Lập phuơng trình đường thẳng AB 
c) tìm phương trình đường thẳng (d) song song với đường thẳng AB và tiếp xúc với P