Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm:
`mx-3=x^2`
`<=>x^2-mx+3=0` (1)
(P) cắt (d) tại 2 điểm phân biệt `<=>` PT (1) có 2 nghiệm phân biệt.
`<=> \Delta >0`
`<=>m^2-3>0`
`<=> m<-\sqrt3 \vee m>\sqrt3`
Viet: `{(x_1+x_2=m),(x_1x_2=3):}`
`|x_1-x_2|=2`
`<=>(x_1-x_2)^2=4`
`<=> (x_1+x_2)^2-4x_1x_2=4`
`<=>m^2-4.3=4`
`<=>m= \pm 4` (TM)
Vậy....
Theo phương trình hoành độ giao điểm:
\(x+1-m=-x^2\)
\(\Leftrightarrow x^2+x+1-m=0\)
Phương trình cần 2 nghiệm phân biệt:
\(\Rightarrow\Delta>0\)
\(\Leftrightarrow1^2-4\left(1-m\right)>0\)
\(\Leftrightarrow4m-3>0\)
\(\Leftrightarrow m>\frac{3}{4}\)
Theo hệ thức Viet :\(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=1-m\end{matrix}\right.\)
\(y_1=x_1+1-m\)
\(y_2=x_2+1-m\)
\(x_1+1-m-\left(x_2+1-m\right)=x_1^2-x_2^2+1\)
\(\Leftrightarrow x_1-x_2=x^2_1-x^2_2+1\)
Vậy với \(m>\frac{3}{4}\)thõa mản điều kiện ban đầu (?)
b: Thay x=1 vào (P), ta được:
\(y=1^2+5\cdot1+2=1+5+2=8\)
Thay x=1 và y=8 vào (d), ta được:
\(m\cdot1=8\)
hay m=8
Phương trình hoành độ giao điểm:
\(x^2+x-3=\left(m+1\right)x+m+2\)
\(\Leftrightarrow x^2-mx-5-m=0\left(1\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm về hai phía trục hoành khi phương trình \(\left(1\right)\) có hai nghiệm trái dấu
\(\Leftrightarrow-5-m< 0\Leftrightarrow m>-5\)
Mà \(m\in\left\{m\in Z|-10\le m\le-4\right\}\Rightarrow m=-4\)
Vậy có một giá trị thỏa mãn yêu cầu bài toán
Phương trình hoành độ giao điểm:
\(x^2-2x-3=x-m\)
\(\Leftrightarrow x^2-3x+m-3=0\left(1\right)\)
\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt nằm cùng một phía với trục tung khi phương trình \(\left(1\right)\) có hai nghiệm phân biệt cùng dấu
\(\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}21-4m>0\\m-3>0\end{matrix}\right.\Leftrightarrow3< m< \dfrac{21}{4}\)
Theo định lí Vi-et: \(x_1+x_2=3\Rightarrow x_2=3-x_1\)
\(x^2_2=16x^2_1\)
\(\Leftrightarrow\left(3-x_1\right)^2=16x^2_1\)
\(\Leftrightarrow x_1^2-6x_1+9=16x^2_1\)
\(\Leftrightarrow15x_1^2+6x_1-9=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=-1\\x_1=\dfrac{3}{5}\end{matrix}\right.\)
Nếu \(x_1=-1\Rightarrow m=-1\left(l\right)\)
Nếu \(x_1=\dfrac{3}{5}\Rightarrow m=\dfrac{111}{25}\left(tm\right)\)
Vậy \(m=\dfrac{111}{25}\)