K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2022

pt hoành độ giao điểm của (P) và (d) là \(mx^2=-3x+1\)\(\Leftrightarrow mx^2+3x-1=0\)(*)

pt (*) có \(\Delta=3^2-4.m.\left(-1\right)=4m+9\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=4m+9>0\Leftrightarrow m>-\frac{9}{4}\Leftrightarrow\hept{\begin{cases}m>-\frac{9}{4}\\m\ne0\end{cases}}\)

Khi đó áp dụng định lí Vi-ét, ta có \(x_1x_2=-\frac{1}{m}\)

A và B nằm cùng phía với trục tung \(\Rightarrow x_1,x_2\)cùng dấu \(\Rightarrow x_1x_2>0\)\(\Rightarrow-\frac{1}{m}>0\)\(\Leftrightarrow\frac{1}{m}< 0\)\(\Leftrightarrow m< 0\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn yêu cầu đề bài thì \(-\frac{9}{4}< m< 0\)

23 tháng 5 2018

Đáp án B

16 tháng 12 2017

Đáp án C

a: (d)'//(d) nên (d'): y=-3x+b

Thay x=1 và y=2 vào (d'), ta được:

b-3=2

=>b=5

=>y=-3x+5

b: PTHĐGĐ là;

mx^2+3x-1=0

Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì

(-3)^2-4*m*(-1)>0 và -1/m>0

=>m<0 và 9+4m>0

=>m<0 và m>-9/4

=>-9/4<m<0

NV
7 tháng 7 2021

Pt hoành độ giao điểm:

\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)

d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)

\(\Leftrightarrow m< 1\)

PTHĐGĐ là:

x^2-(2m+1)x+m^2+m=0

Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung thì m^2+m<0

=>-1<m<0

20 tháng 11 2017

Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1

↔ x 2 − (m + 2)x + m + 1 = 0 (1)

(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0

↔ m < −1

Vậy m < −1

Đáp án: A

25 tháng 9 2017

b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi

Đề kiểm tra Toán 9 | Đề thi Toán 9

Khi đó 2 nghiệm của phương trình là:

Đề kiểm tra Toán 9 | Đề thi Toán 9
Đề kiểm tra Toán 9 | Đề thi Toán 9

Kẻ BB' ⊥ OM ; AA' ⊥ OM

Đề kiểm tra Toán 9 | Đề thi Toán 9

Ta có:

S A O M  = 1/2 AA'.OM ; S B O M  = 1/2 BB'.OM

Theo bài ra:

Đề kiểm tra Toán 9 | Đề thi Toán 9

Do m > 0 nên m = 8

Vậy với m = 8 thì thỏa mãn điều kiện đề bài.

Phương trình hoành độ giao điểm là:

\(x^2-\left(2m+1\right)x+m^2-1=0\)

\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-1\right)\)

\(=4m^2+4m+1-4m^2+4=4m+5\)

Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì \(m^2-1< 0\)

hay -1<m<1