Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: (d)'//(d) nên (d'): y=-3x+b
Thay x=1 và y=2 vào (d'), ta được:
b-3=2
=>b=5
=>y=-3x+5
b: PTHĐGĐ là;
mx^2+3x-1=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về cùng một phía so với trục tung thì
(-3)^2-4*m*(-1)>0 và -1/m>0
=>m<0 và 9+4m>0
=>m<0 và m>-9/4
=>-9/4<m<0
Pt hoành độ giao điểm:
\(x^2=mx-m+1\Leftrightarrow x^2-mx+m-1=0\) (1)
d cắt (P) tại 2 điểm pb nằm ở 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow1.\left(m-1\right)< 0\)
\(\Leftrightarrow m< 1\)
PTHĐGĐ là:
x^2-(2m+1)x+m^2+m=0
Để (d) cắt (P) tại hai điểm phân biệt nằm về hai phía trục tung thì m^2+m<0
=>-1<m<0
Phương trình hoành độ giao điểm của d và (P): x 2 = (m + 2)x – m – 1
↔ x 2 − (m + 2)x + m + 1 = 0 (1)
(d) cắt (P) tại hai điểm phân biệt nằm về hai phía của trục tung khi và chỉ khi phương trình (1) có hai nghiệm phân biệt trái dấu ↔ ac < 0 ↔ m + 1 < 0
↔ m < −1
Vậy m < −1
Đáp án: A
b) (d) cắt (P) tại 2 điểm A, B phân biệt nằm về 2 phía của trục tung khi và chỉ khi
Khi đó 2 nghiệm của phương trình là:
Kẻ BB' ⊥ OM ; AA' ⊥ OM
Ta có:
S A O M = 1/2 AA'.OM ; S B O M = 1/2 BB'.OM
Theo bài ra:
Do m > 0 nên m = 8
Vậy với m = 8 thì thỏa mãn điều kiện đề bài.
Phương trình hoành độ giao điểm là:
\(x^2-\left(2m+1\right)x+m^2-1=0\)
\(\text{Δ}=\left(2m+1\right)^2-4\left(m^2-1\right)\)
\(=4m^2+4m+1-4m^2+4=4m+5\)
Để (P) cắt (d) tại hai điểm nằm về hai phía của trục tung thì \(m^2-1< 0\)
hay -1<m<1
pt hoành độ giao điểm của (P) và (d) là \(mx^2=-3x+1\)\(\Leftrightarrow mx^2+3x-1=0\)(*)
pt (*) có \(\Delta=3^2-4.m.\left(-1\right)=4m+9\)
Vậy để (d) cắt (P) tại 2 điểm phân biệt thì \(\Delta=4m+9>0\Leftrightarrow m>-\frac{9}{4}\Leftrightarrow\hept{\begin{cases}m>-\frac{9}{4}\\m\ne0\end{cases}}\)
Khi đó áp dụng định lí Vi-ét, ta có \(x_1x_2=-\frac{1}{m}\)
A và B nằm cùng phía với trục tung \(\Rightarrow x_1,x_2\)cùng dấu \(\Rightarrow x_1x_2>0\)\(\Rightarrow-\frac{1}{m}>0\)\(\Leftrightarrow\frac{1}{m}< 0\)\(\Leftrightarrow m< 0\)
Vậy để (d) cắt (P) tại 2 điểm phân biệt thỏa mãn yêu cầu đề bài thì \(-\frac{9}{4}< m< 0\)