Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=2 vào y=ax2, ta được:
\(a\cdot1^2=2\)
hay a=2
c: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x^2-2x-4=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\y=2x^2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(2;8\right);\left(-1;2\right)\right\}\)
a: Thay x=1 vàp (P),ta được:
y=-1^2=-1
Thay x=2 vào (P), ta được:
y=-2^2=-4
Vì (d) đi qua A(1;-1) và B(2;-4) nên ta có hệ:
a+b=-1 và 2a+b=-4
=>a=-3 và b=2
c: (d): y=-3x+2 và (P): y=-x^2
Vì P đi qua điểm A
Thay vèo ta cóa \(-1=a.4\Rightarrow a=-\frac{1}{4}\)
Ý b thiếu dữ kiện à bn ơi ?
Bài giải:
a) Theo hình vẽ, ta lấy điểm A thuộc đồ thị có tọa độ là x = -2, y = 2. Khi đó ta được:
2 = a . (-2)2 suy ra a =
b) Đồ thị có hàm số là y = x2 . Tung độ của điểm thuộc parabol có hoành độ x = -3 là y = (-3)2 suy ra y = .
c) Các điểm thuộc parabol có tung độ là 8 là:
8 = x2 ⇔ x2 = 16 ⇔ x = ± 4
Ta được hai điểm và tọa độ của hai điểm đó là M(4; 8) và M'(-4; 8).
(d) đi qua A(-2;2) <=> 2 = -2a + b (1)
Hoành độ giao điểm tm pt
\(\dfrac{1}{2}x^2=ax+b\Leftrightarrow x^2-2ax-2b=0\)
\(\Delta'=a^2-\left(-2b\right)=a^2+2b\)
Để (P) tiếp xúc (d) \(a^2+2b=0\)(2)
Từ (1) ; (2) ta có hệ \(\left\{{}\begin{matrix}-2a+b=2\\a^2+2b=0\end{matrix}\right.\)bạn tự giải nhé
Thay x = m 5 ; y = −2 5 vào hàm số y = − 5 x 2 ta được
− 2 5 = − 5 . m 5 2 ⇔ − 5 m 5 = 2 5 ⇔ m = − 2 5
Vậy m = − 2 5
Đáp án cần chọn là: D
a: Thay a=3 vào (P), ta được:
\(y=a\cdot x^2=3x^2\)
Vẽ đồ thị:
b: Thay x=2 và \(y=-\dfrac{5}{4}\) vào (P), ta được:
\(a\cdot2^2=-\dfrac{5}{4}\)
=>\(a\cdot4=-\dfrac{5}{4}\)
=>\(a=-\dfrac{5}{4}:4=-\dfrac{5}{16}\)