Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I don't now
or no I don't
..................
sorry
1a) \(A+B+C\)
\(=\left(x-y\right)^2+4xy-\left(x+y\right)^2\)
\(=\left(x^2-2xy+y^2\right)+4xy-\left(x^2+2xy+y^2\right)\)
\(=\left(x^2-x^2\right)+\left(y^2-y^2\right)+\left(4xy-2xy-2xy\right)=0\left(đpcm\right)\)
a, (a + b + c)^2 + (a - b - c)^2 +( b - c - a) ^2 + (c - a - b)^2
= (a + b + c)^2 + (a + b - c)^2 + (a - b - c)^2 + (a - b + c)^2
= (a + b)^2 + 2c(a + b) + c^2 + (a + b)^2 - 2c(a + b) + c^2 +
(a - b)^2 - 2c(a - b) + c^2 + (a - b)^2 + 2c(a - b) +c^2
= 2(a + b)^2 + 2c^2 + 2(a - b)^2 + 2c^2
= 2[(a + b)^2 + (a - b)^2] + 4c^2
=2(2a^2 + 2b^2) + 4c^2
= 4(a^2 + b^2 + c^2)
a. \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab+2bc-2ac+c^2+a^2+b^2-2bc+2ac-2ab+a^2+b^2+c^2+2ab-2ac-2bc=4\left(a^2+b^2+c^2\right)\)b. Bạn làm tương tự câu a , đáp số ra : \(4\left(a^2+b^2+c^2+d^2\right)\)
Ta có:
\(\hept{\begin{cases}ab=q\\a+b=p\end{cases}}\)và \(\hept{\begin{cases}cd=s\\c+d=r\end{cases}}\)
\(M=\frac{2\left(abc+bcd+cda+dab\right)}{p^2+q^2+r^2+s^2}=\frac{2\left(qc+sb+sa+qd\right)}{p^2+q^2+r^2+s^2}\)
\(=\frac{2\left(qr+sp\right)}{p^2+q^2+r^2+s^2}\le\frac{2\left(qr+sp\right)}{2\left(qr+sp\right)}=1\)
Với M = 1 thì \(\hept{\begin{cases}q=r\\p=s\end{cases}}\)
Tới đây thì không biết đi sao nữa :D
thôi bỏ bài này đi cũng được vì chưa tới lúc cần dung phương trình
\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-4ab-4ac-4ad-4ae\ge0\)
\(\Leftrightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+\left(a^2-4ae-4e^2\right)\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)
BĐT trên đúng, mà các phép biến đổi là tương đương
\(\RightarrowĐPCM\)
Dấu "=" xảy ra khi a = 2b = 2c = 2d = 2e
Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$
Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$
Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.
Đề thiếu rồi nhé: \(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Quá ez:))
Ta có: \(a^2+b^2+c^2+d^2+e^2\)
\(=\left(\frac{a^2}{4}+b^2\right)+\left(\frac{a^2}{4}+c^2\right)+\left(\frac{a^2}{4}+d^2\right)+\left(\frac{a^2}{4}+e^2\right)\)
\(\ge2\sqrt{\frac{a^2}{4}\cdot b^2}+2\sqrt{\frac{a^2}{4}\cdot c^2}+2\sqrt{\frac{a^2}{4}\cdot d^2}+2\sqrt{\frac{a^2}{4}\cdot e^2}\)
\(=ab+ac+ad+ae=a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi: \(\frac{a}{2}=b=c=d=e\)
Sửa đề a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )
a2 + b2 + c2 + d2 + e2 ≥ a( b + c + d + e )
<=> a2 + b2 + c2 + d2 + e2 ≥ ab + ac + ad + ae
Nhân 4 vào từng vế
<=> 4( a2 + b2 + c2 + d2 + e2 ) ≥ 4( ab + ac + ad + ae )
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 ≥ 4ab + 4ac + 4ad + 4ae
<=> 4a2 + 4b2 + 4c2 + 4d2 + 4e2 - 4ab - 4ac - 4ad - 4ae ≥ 0
<=> ( a2 - 4ab + 4b2 ) + ( a2 - 4ac + 4c2 ) + ( a2 - 4ac + 4d2 ) + ( a2 - 4ae + 4e2 ) ≥ 0
<=> ( a - 2b )2 + ( a - 2c )2 + ( a - 2d )2 + ( a - 2e )2 ≥ 0 ( đúng )
Vậy bđt được chứng minh
Dấu "=" xảy ra <=> \(b=c=d=e=\frac{a}{2}\)