Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) gọi hai số chẵn liên tiếp là 2n và 2n+2 ( với n là số tự nhiên)
=> tích của hai số tự nhiên liên tiếp:
2n(2n+2)=2n[2(n+1)]=4n(n+1)
ta thấy: 2n(2n+1)\(⋮\)2 ; 4n(n+1)\(⋮\)4
=> 2n(2n+2)\(⋮\)8
vậy tích của hai số chẵn liên tiếp thì chia hết cho 8
a) \(x⋮9;15< x\le80\)
\(\Rightarrow x\in B\left(9\right)\)
\(B\left(9\right)=\left\{0;9;18;27;...;81;90;...\right\}\)
Mà \(15< x\le80\)
\(\Rightarrow x\in\left\{18;27;36;...;72\right\}\)
b) Mình nghĩ đề bài nên đổi thành: \(17-x⋮x+5\)
17 = 22 - 5
Ta có;
\(\left[22-\left(5+x\right)\right]⋮x+5\)
Mà \(5+x⋮x+5\)
\(\Rightarrow22⋮x+5\)
\(\Rightarrow x+5\inƯ\left(22\right)\)
Th1: x + 5 = 1 => loại ( Nếu đề bài là x thuộc N)
Th2: x + 5 = 2 => loại ( ___________________)
Th3: x + 5 = 11
x = 11 - 5
x = 6
Th4: x + 5 = 22
x = 22 - 5
x = 17
Vậy \(x\in\left\{17;6\right\}\)
c) Hihi mình k bt
d) x2 + 2x = 80
=> x.x + 2.x =80
=> x(x+2) = 80
Phân tích 80 ra thừa số nguyên tố ta được
80 = 2.2.2.2.5
= 8 . 10
x và x + 2 là 2 số cách nhau 2 đơn vị
=> x = 8
Chỗ nào chưa "thông" inbox nha ( Đầu óc k đen tối đâu)
bn ko lm bài 3 ak cái bài mà chứng minh S chia hết cho 50 đó
Bài 4:
Gọi số cần tìm là a
Ta có a chia cho 3;5;7 có số dư lần lượt là 1;2;3 với a nhỏ nhất
Ta thấy nếu (a+2) thì chia hết cho 3;5;7
=> a+2 = BCNN(3;5;7)
Do đó a+2=3.5.7=105
Vậy a=103
71+72+73+...+72016
=(71+72+73+74)+(75+76+77+78)+...+(72013+72014+72015+72016)
=7.400+75.400+...+72013.400
=400.(7+75+...+72013)
vì 400\(⋮\)cho 20 nên 400.(7+75+...+72013)\(⋮\)20
\(\Rightarrow\)71+72+73+...+72016\(⋮\)20
Bài 1:
a) Cho A = 1+14+...+142014
=> 14A = 14 + 142 +...+142015
=> 14A - A = 142015 - 1
13A = 142015 - 1
mà 13 A chia hết cho 13
=> đpcm
b) làm tương tự
c) 1+3+32 +...+32015 ( có 2016 số hạng)
= (1+3+32 +33) + ...+ (32012 + 32013 +32014 +32015)
= 40 + ...+ 32012.(1+3+32+33)
...
Bài 2:
N = 7+72 + 73 +...+ 7n
=> 7N = 72 + 73 +74 +...+ 7n+1
=> \(6N=7^{n+1}-7\)
Thay vào biểu thức
=> 7n+1 -7 + 7 = 22016
7n+1 = 22016
...
a)ta có 74n-1 = (74)n-1 = 2401n - 1 = ...1-1=...0 \(⋮\) 10 { vì 2041 có tận cùng bằng 1 nên 2041 mũ mấy cũng có tận cùng bằng 1 nên 2041n có tận cùng bằng 1}
b) ta có 92n+1+1 = (92)n . 9 + 1 = 81n .9 +1 = ..1 .9 +1=..9+1=..0 \(⋮\)10 { vì 81 có tận cùng bằng 1 nên 81 mũ mấy cũng có tận cùng bằng 1 nên 81n có tận cùng bằng 1}
cho mik mik giải nốt bài 2 cho
a, Ta có:
\(3^{2n+1}+2^{n+2}=9^n.3+2^n.4\)
\(=9^n.3-2^n.3+2^n.7=3\left(9^n-2^n\right)+2^n.7\)
Ta lại có:
\(9^n-2^n⋮9-2=7;2n.7⋮7\)
\(\Rightarrow3^{2n+1}+2^{n+2}⋮7\left(dpcm\right)\)
Ta có: P=7+7^2+7^3+...+7^2016
=>P=(7+7^2+7^3+7^4)+(7^5+7^6+7^7+7^8)+...+(7^2013+7^2014+7^2015+7^2016)
=>P=7(1+7+7^2+7^3)+7^5(1+7+7^2+7^3)+...+7^2013(1+7+7^2+7^3)
=>P=7.400+7^5.400+...+7^2013.400
=>P=400(7+7^5+...+7^2013) chia hết cho 400 mà 20^2=400=>P chia hết cho 20^2