Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyen tố lớn hơn 3 nên p là số lẻ không chia hết cho 3\(\Rightarrow\)
p không chia hết cho 3 thì p^2 chia 3 dư 1 nên p^2-1 chia hết cho 3 (1)
Lại có p^2-1=(p-1)(p+1) vì p là số lẻ nên p-1 và p+1 là 2 số chẵn liên tiếp nên (p-1)(p+1) chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-1 chia hết cho 3.8=24(vì 8 và 3 nguyên tố cùng nhau)
\(A=4m^3+9m^2-19m-30=4m^3-4m+9m^2-3m-12m-30\)
\(=4m\left(m^2-1\right)+3m\left(3m-1\right)-12m-30\)
\(=4m\left(m-1\right)\left(m+1\right)+3m\left(3m-1\right)-6\left(2m+5\right)\)
Ta có:
- \(-6\left(2m+5\right)\)chia hết cho 6 với mọi m.
- \(3m\left(3m-1\right)\)chia hết cho 6 với mọi m (Vì 3m và 3m-1 là 2 số tự nhiên liên tiếp nên tích chia hết cho 2 và 3m chia hết cho 3).
- \(4m\left(m-1\right)\left(m+1\right)\)chia hết cho 6 vì \(m\left(m-1\right)\left(m+1\right)\)là tích của 3 số tự nhiên liên tiếp.
A có các số hạng chia hết cho 6 nên A chia hết cho 6 với mọi m nguyên (ĐPCM).
vì b>0 ,d>0 ,a/b<c/d
suy ra ad<bc
suy ra ad+ab<bc+ab
suy ra a(b+d) <b(a+c)suy ra a/b <a+c/b+d
lại có ad <bc suy ra ad+cd <bc+cd
suy ra d(a+c )<c(b+d)suy ra a+c/b+d <c/d
vậy a/b <a+c/b+d<c/d
Giả sử a ^ 3 + b ^ 3 + c ^ 3 chia hết cho 9 (1). Giả sử a, b, c đều không chia hết cho 3 mỗi số có dạng BS * 9 plus/minus 1 do đó a ^ 3 + b ^ 3 + c ^ 3 =B S9+r 1 +r 2 +r 3 , trong đó r_{1} r_{2} r_{3} \in \{1; - 1\} Không có cách chọn ba số r_{1} r_{2} r_{3} nào để tổng chia hết cho Vậy tồn tại một trong ba số a, b, c là bội của 3.
Câu hỏi của Trần Xuân Mai - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài này! Chỉ thay đổi vị trí của x và y nhé!