Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:
\(\left(x-2\right)\left(2x+5\right)-2x^2-1=0\)
\(\Leftrightarrow2x^2+x-10-2x^2-1=0\)
\(\Leftrightarrow x-11=0\Leftrightarrow x=11\)
Bài 2:
\(P=\left|2-x\right|+2y^4+5\)
Ta thấy:
\(\begin{cases}\left|2-x\right|\ge0\\2y^4\ge0\end{cases}\)
\(\Rightarrow\left|2-x\right|+2y^4\ge0\)
\(\Rightarrow\left|2-x\right|+2y^4+5\ge5\)
\(\Rightarrow P\ge5\)
Dấu = khi \(\begin{cases}\left|2-x\right|=0\\2y^4=0\end{cases}\)\(\Leftrightarrow\)\(\begin{cases}x=2\\y=0\end{cases}\)
Vậy MinP=5 khi \(\begin{cases}x=2\\y=0\end{cases}\)
Bài 4:
2(2x+x2)-x2(x+2)+(x3-4x+13)
=2x2+4x-x3-2x2+x3-4x+13
=(2x2-2x2)+(4x-4x)-(-x3+x3)+13
=13

\(1)\)
\(A=-2x^2+x-5\)
\(-2A=\left(4x^2-2x+\frac{1}{4}\right)+\frac{39}{4}\)
\(-2A=\left(2x-\frac{1}{2}\right)^2+\frac{39}{4}\ge\frac{39}{4}\)
\(A=\frac{\left(2x-\frac{1}{2}\right)^2+\frac{39}{4}}{-2}\le\frac{39}{4}:\left(-2\right)=\frac{-39}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(2x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\)\(x=\frac{1}{4}\)
Vậy GTLN của \(A\) là \(\frac{-39}{8}\) khi \(x=\frac{1}{4}\)
Chúc bạn học tốt ~

a: Sửa đề: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
ĐKXĐ: x∉{0;2;-2;3}
Ta có: \(A=\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\left(\frac{x^2-3x}{2x^2-x^3}\right)\)
\(=\left\lbrack\frac{-\left(x+2\right)}{x-2}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{x+2}\right\rbrack:\frac{x\left(x-3\right)}{x^2\cdot\left(2-x\right)}\)
\(=\frac{-\left(x+2\right)^2-4x^2+\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}:\frac{x-3}{x\left(2-x\right)}\)
\(=\frac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{-x\left(x-2\right)}{x-3}\)
\(=\frac{-4x^2-8x}{x+2}\cdot\frac{-x}{x-3}=\frac{-4x\left(x+2\right)}{x+2}\cdot\frac{-x}{x-3}=\frac{4x^2}{x-3}\)
b: Để A>0 thì \(\frac{4x^2}{x-3}>0\)
=>x-3>0
=>x>3
c: |x-7|=4
=>\(\left[\begin{array}{l}x-7=4\\ x-7=-4\end{array}\right.\Rightarrow\left[\begin{array}{l}x=11\left(nhận\right)\\ x=3\left(loại\right)\end{array}\right.\)
Thay x=11 vào A, ta được:
\(A=\frac{4\cdot11^2}{11-3}=\frac{4\cdot121}{8}=\frac{121}{2}\)

`Answer:`
`a)`
`A=5(x+1)^2-3(x-3)^2-4(x^2-4)`
`=>A=5(x^2+2x+1)-3(x^2-6x+9)-4x^2+16`
`=>A=5x^2+10x+5-3x^2+18x-27-4x^2+16`
`=>A=(5x^2-3x^2-4x^2)+(10x+18x)+(5-27+16)`
`=>A=-2x^2+28x-6`
`b)`
`B=5(x+1)^2-3(x-3)^2-4(x+2)(x-2)`
`=2x(3x+5)-3(3x+5)-2x(x^2-4x+4)-[(2x)^2-3^2]`
`=6x^2+10x-9x-15-2x^3+8x^2-8x-4x^2+9`
`=(6x^2-4x^2+8x^2)-2x^3+(10x-9x-8x)+(-15+9)`
Thay `x=-7` vào ta được:
`B=10(-7)^2-2(-7)^3-7(-7)-6`
`=>B=10.49-2(-343)+49-6`
`=>B=490+686+49-6`
`=>B=1219`

a: ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};\dfrac{1}{2};-2\right\}\)
b: \(B=\dfrac{4x^2+4x+1-4-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\dfrac{2x+1}{x+2}\)
\(=\dfrac{8x-4}{2x-1}\cdot\dfrac{1}{x+2}=\dfrac{4}{x+2}\)