K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 1 2018

Lời giải:

Theo nhị thức New-ton:

\((x+1)^{2n}=C^{0}_{2n}+C^{1}_{2n}x+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n}\)

\((x-1)^n=C^0_{2n}-C^1_{2n}x+C^2_{2n}x^2-.....-C^{2n-1}_{2n}x^{2n-1}+C^{2n}_{2n}x^{2n}\)

Trừ theo vế ta có:

\(\frac{(x+1)^{2n}-(x-1)^{2n}}{2}=C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1}\)

\(\Rightarrow \int ^{1}_{0}\frac{(x+1)^{2n}-(x-1)^{2n}}{2}dx=\int ^{1}_{0}(C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1})dx\)

Xét vế trái:

\(\text{VT}=\frac{1}{2}\int ^{1}_{0}(x+1)^{2n}d(x+1)-\frac{1}{2}\int ^{1}_{0}(x-1)^{2n}d(x-1)\)

\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{1}{2}\left ( \frac{(x+1)^{2n+1}-(x-1)^{2n+1}}{2n+1} \right )=\frac{2^{2n}-1}{2n+1}\)

Xét vế phải:

\(\text{VP}=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{C^{1}_{2n}x^2}{2}+\frac{C^{3}_{2n}x^4}{4}+....+\frac{C^{2n-1}_{2n}x^{2n}}{2n} \right )=\frac{1}{2}C^{1}_{2n}+\frac{1}{4}C^3_{2n}+...+\frac{1}{2n}C^{2n-1}_{2n}\)

Vậy \(A=\frac{2^{2n}-1}{2n+1}\)

25 tháng 3 2016

a) Giả sử các đỉnh đa giác là các điểm biểu diễn hình học các căn bậc n của đơn vị \(P_o=1\). Xét đa thức :

\(f=z^n-1=\left(z-1\right)\left(z-\omega\right)........\left(z-\omega^{n-1}\right),\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\)

Rõ ràng :

\(n=f'\left(1\right)=\left(1-\omega\right)\left(1-\omega^2\right)...\left(1-\omega^{n-1}\right)\)

Lấy Modun 2 vế ta được kết quả

b) Ta có :

\(1-\omega^k=1-\cos\frac{2k\pi}{n}-i\sin\frac{2k\pi}{n}=2\sin^2\frac{k\pi}{n}-2i\sin\frac{k\pi}{n}\cos\frac{k\pi}{n}\)

          \(=2\sin\frac{k\pi}{n}\left(\sin\frac{k\pi}{n}-i\cos\frac{k\pi}{n}\right)\)

Do đó : \(\left|1-\omega^k\right|=2\sin\frac{k\pi}{n},k=1,2,....,n-1\)

Sử dụng a) ta có điều phải chứng minh

c) Xét đa giác đều \(Q_oQ_1.....Q_{2n-1}\) nội tiếp trong đường tròn, các đỉnh của nó là điểm biểu diễn hình học của \(\sqrt{n}\) của đơn vị.

Theo a) \(Q_oQ_1.Q_oQ_2....Q_oQ_{2n-1}=2n\)

Bây giờ xét đa giác đều \(Q_oQ_2....Q_{2n-1}\)  ta có \(Q_oQ_2.Q_oQ_4..Q_oQ_{2n-2}=n\)

Do đó \(Q_oQ_1.Q_oQ_3..Q_oQ_{2n-1}=2\) Tính toán tương tự phần b) ta được

\(Q_oQ_{2k-1}=2\sin\frac{\left(2k-1\right)\pi}{2n},k=1,2....n\) và ta có điều phải chứng minh

 

21 tháng 1 2018

A=\(\dfrac{12n+1}{2n+3}=\dfrac{6\left(2n+3\right)-17}{2n+3}=6-\dfrac{17}{2n+3}\)

De A∈Z thi \(\dfrac{17}{2n+3}\in Z\)

De n la so nguyen , \(\dfrac{17}{2n+3}\in Z\) thi 17 ⋮2n+3

=> 2n+3∈U(17)=(1,17,-1,-17)

=> n∈(-1,7,-2,-10)

8 tháng 9 2019

Lớp 12 ?!

Ta có:

7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N

8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N

\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)

15 tháng 9 2020

\(2n+n^2\left(2+2n\right)2n-2n^2\left(n^2+2\right)\)

\(=2n+2n^2+4n^4-2n^4-4n^2\)

\(=2n+\left(2n^2-4n^2\right)+\left(4n^4-2n^4\right)\)

\(=2n-2n^2+2n^4\)

\(=2\left(n-n^2+n^4\right)\)

15 tháng 9 2020

Rút gọn à -.- ?

2n + n2( 2 + 2n )2n - 2n2( n2 + 2 )

= 2n + 2n3( 2 + 2n ) - 2n4 - 4n2

= 2n + 4n3 + 4n4 - 2n4 - 4n2

= 2n4 + 4n3 - 4n2 + 2n

= 2n( n3 + 2n2 - 2n + 1 )

7 tháng 1 2018

Đáp án C

Ta có:

1 log 3 x + 1 log 3 2 x + 1 log 3 3 x + . . . + 1 log 3 n x   =   210 log 3 x

⇔ n n + 1 2 log 3 x = 210 log 3 x

<=> n(n+1) = 420

<=> n = 20

 

=> P = 2.20+3 = 43.

30 tháng 3 2017

10 tháng 11 2023

A

3 tháng 5 2018

29 tháng 11 2017

Để \(13 \vdots (2n - 1)\)

thì \((2n - 1) \epsilon Ư(13)\)

\(Ư (13) = \left \{ - 13; - 1 ; 1; 13 \right \}\)

Do đó:

2n - 1 = - 13 => n = - 6

2n - 1 = - 1 => n = 0

2n - 1 = 1 => n = 1

2n - 1 = 13 => n = 7

Vậy \(n \epsilon \left \{ - 6;0;1;7 \right \}\) thì \(13 \vdots (2n - 1)\)

11 tháng 7 2018

13chia hết cho (2n - 1)

⇒2n-1 ∈ Ư(13)

Ư(13)={-1;1;-13;13}

2n-1 -1 1 -13 13
n 0 1 -6

7

➤ n ∈ {0;1;-6;7}