Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Theo nhị thức New-ton:
\((x+1)^{2n}=C^{0}_{2n}+C^{1}_{2n}x+C^2_{2n}x^2+...+C^{2n}_{2n}x^{2n}\)
\((x-1)^n=C^0_{2n}-C^1_{2n}x+C^2_{2n}x^2-.....-C^{2n-1}_{2n}x^{2n-1}+C^{2n}_{2n}x^{2n}\)
Trừ theo vế ta có:
\(\frac{(x+1)^{2n}-(x-1)^{2n}}{2}=C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1}\)
\(\Rightarrow \int ^{1}_{0}\frac{(x+1)^{2n}-(x-1)^{2n}}{2}dx=\int ^{1}_{0}(C^1_{2n}x+C^3_{2n}x^3+...+C^{2n-1}_{2n}x^{2n-1})dx\)
Xét vế trái:
\(\text{VT}=\frac{1}{2}\int ^{1}_{0}(x+1)^{2n}d(x+1)-\frac{1}{2}\int ^{1}_{0}(x-1)^{2n}d(x-1)\)
\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{1}{2}\left ( \frac{(x+1)^{2n+1}-(x-1)^{2n+1}}{2n+1} \right )=\frac{2^{2n}-1}{2n+1}\)
Xét vế phải:
\(\text{VP}=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\left ( \frac{C^{1}_{2n}x^2}{2}+\frac{C^{3}_{2n}x^4}{4}+....+\frac{C^{2n-1}_{2n}x^{2n}}{2n} \right )=\frac{1}{2}C^{1}_{2n}+\frac{1}{4}C^3_{2n}+...+\frac{1}{2n}C^{2n-1}_{2n}\)
Vậy \(A=\frac{2^{2n}-1}{2n+1}\)
a) Giả sử các đỉnh đa giác là các điểm biểu diễn hình học các căn bậc n của đơn vị \(P_o=1\). Xét đa thức :
\(f=z^n-1=\left(z-1\right)\left(z-\omega\right)........\left(z-\omega^{n-1}\right),\omega=\cos\frac{2\pi}{n}+i\sin\frac{2\pi}{n}\)
Rõ ràng :
\(n=f'\left(1\right)=\left(1-\omega\right)\left(1-\omega^2\right)...\left(1-\omega^{n-1}\right)\)
Lấy Modun 2 vế ta được kết quả
b) Ta có :
\(1-\omega^k=1-\cos\frac{2k\pi}{n}-i\sin\frac{2k\pi}{n}=2\sin^2\frac{k\pi}{n}-2i\sin\frac{k\pi}{n}\cos\frac{k\pi}{n}\)
\(=2\sin\frac{k\pi}{n}\left(\sin\frac{k\pi}{n}-i\cos\frac{k\pi}{n}\right)\)
Do đó : \(\left|1-\omega^k\right|=2\sin\frac{k\pi}{n},k=1,2,....,n-1\)
Sử dụng a) ta có điều phải chứng minh
c) Xét đa giác đều \(Q_oQ_1.....Q_{2n-1}\) nội tiếp trong đường tròn, các đỉnh của nó là điểm biểu diễn hình học của \(\sqrt{n}\) của đơn vị.
Theo a) \(Q_oQ_1.Q_oQ_2....Q_oQ_{2n-1}=2n\)
Bây giờ xét đa giác đều \(Q_oQ_2....Q_{2n-1}\) ta có \(Q_oQ_2.Q_oQ_4..Q_oQ_{2n-2}=n\)
Do đó \(Q_oQ_1.Q_oQ_3..Q_oQ_{2n-1}=2\) Tính toán tương tự phần b) ta được
\(Q_oQ_{2k-1}=2\sin\frac{\left(2k-1\right)\pi}{2n},k=1,2....n\) và ta có điều phải chứng minh
Ta có:
7=3k+1\(\Rightarrow\)7\(^{n+1}\)=3k+1 với mọi n thuộc N
8=3k+2\(\Rightarrow\)8\(^{2n+1}\)=3k+2 với mọi n thuộc N
\(\Rightarrow\)7\(^{n+1}\)+8\(^{2n+1}\)=(3k+1)+(3k+2)=3k+3\(⋮\)3(đpcm)
\(2n+n^2\left(2+2n\right)2n-2n^2\left(n^2+2\right)\)
\(=2n+2n^2+4n^4-2n^4-4n^2\)
\(=2n+\left(2n^2-4n^2\right)+\left(4n^4-2n^4\right)\)
\(=2n-2n^2+2n^4\)
\(=2\left(n-n^2+n^4\right)\)
Rút gọn à -.- ?
2n + n2( 2 + 2n )2n - 2n2( n2 + 2 )
= 2n + 2n3( 2 + 2n ) - 2n4 - 4n2
= 2n + 4n3 + 4n4 - 2n4 - 4n2
= 2n4 + 4n3 - 4n2 + 2n
= 2n( n3 + 2n2 - 2n + 1 )
Đáp án C
Ta có:
1 log 3 x + 1 log 3 2 x + 1 log 3 3 x + . . . + 1 log 3 n x = 210 log 3 x
⇔ n n + 1 2 log 3 x = 210 log 3 x
<=> n(n+1) = 420
<=> n = 20
=> P = 2.20+3 = 43.
Để \(13 \vdots (2n - 1)\)
thì \((2n - 1) \epsilon Ư(13)\)
\(Ư (13) = \left \{ - 13; - 1 ; 1; 13 \right \}\)
Do đó:
2n - 1 = - 13 => n = - 6
2n - 1 = - 1 => n = 0
2n - 1 = 1 => n = 1
2n - 1 = 13 => n = 7
Vậy \(n \epsilon \left \{ - 6;0;1;7 \right \}\) thì \(13 \vdots (2n - 1)\)
13chia hết cho (2n - 1)
⇒2n-1 ∈ Ư(13)
Ư(13)={-1;1;-13;13}
2n-1 | -1 | 1 | -13 | 13 |
n | 0 | 1 | -6 |
7 |
➤ n ∈ {0;1;-6;7}