Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
\(T=\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T=2+\frac{3}{2}+\frac{4}{2^2}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{3}{2}-\frac{2}{2}\right)+\left(\frac{4}{2^2}-\frac{4}{2^2}\right)+...+\left(\frac{2017}{2^{2015}}-\frac{2016}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow2T-T=2+\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
Ta đặt \(V=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(\Rightarrow T=2+V-\frac{2017}{2^{2016}}\text{(*)}\)
\(\Leftrightarrow2V=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)
\(\Leftrightarrow2V-V=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)
\(\Leftrightarrow2V-V=1-\frac{1}{2^{2015}}\text{(**)}\)
Từ (*)(**)\(\Rightarrow T=2+\left(1-\frac{1}{2^{2015}}\right)-\frac{2017}{2^{2016}}\)
\(\Leftrightarrow T=3-\frac{1}{2^{2015}}-\frac{2017}{2^{2016}}\)
`=>T<3`
Ta có : S = 1 +21+22+........+22017
2S= 2 +22+23+.......+22018
2S -S =( 2+22+23+......+22018) - (1+2+22+.......+22017)
S = 22018-1
S =22018- 1
S = 22 . 22016-1
\(\Rightarrow\)S < 5. 22016
Ta có :S= 1+ 2 + 22 + ........+ 22017
Suy ra 2S = 2 + 22 +.......+22018
Suy ra 2S -S = (2-2) + (22-22)+......+(22018 - 1)
Suy ra S=22018-1
Ta có :
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\)
\(\frac{1}{2}T=\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\)
\(T-\frac{1}{2}T=\left(\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}\right)-\left(\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{2017}{2^{2017}}\right)\)
\(\frac{1}{2}T=1+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2017}{2^{2016}}-\frac{2}{2^2}-\frac{3}{2^3}-\frac{4}{2^4}-...-\frac{2017}{2^{2017}}\)
\(\frac{1}{2}T=1+\left(\frac{3}{2^2}-\frac{2}{2^2}\right)+\left(\frac{4}{2^3}-\frac{3}{2^3}\right)+...+\left(\frac{2017}{2^{2016}}-\frac{2016}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)
\(\frac{1}{2}T=1+\left(\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{2^{2016}}\right)-\frac{2017}{2^{2017}}\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{2^{2016}}\)
\(2A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)
\(2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}\right)\)
\(A=\frac{1}{2}-\frac{1}{2^{2016}}\)
Mà \(\frac{1}{2^{2016}}>0\)
\(\Rightarrow\)\(A=\frac{1}{2}-\frac{1}{2^{2016}}< \frac{1}{2}\)
\(\Leftrightarrow\)\(1+A-\frac{2017}{2^{2017}}< 1+\frac{1}{2}-\frac{1}{2^{2016}}-\frac{2017}{2^{2017}}\)
\(\Leftrightarrow\)\(\frac{1}{2}T< \frac{3}{2}-\left(\frac{1}{2^{2016}}+\frac{2017}{2^{2017}}\right)\)
Mà \(\frac{1}{2^{2016}}+\frac{2017}{2^{2017}}\)
\(\Rightarrow\)\(\frac{1}{2}T< \frac{3}{2}\)
\(\Rightarrow\)\(T< \frac{3}{2}.2\)
\(\Rightarrow\)\(T< 3\)
Vậy \(T< 3\)
Chúc bạn học tốt ~
hình như là ko
Đề có đúng không thế bạn