\(^2\)(d) y=2mx-2m-3

a)lập phương trình (d) đi qua I(2,3) và có đúng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 6 2020

a/ Chắc bạn ghi đề không giống cô giáo cho, đề hợp lý là chứng minh d qua I sẽ có đúng 1 điểm chung với (P)

d qua I sẽ có dạng \(y=6x-9\)

Giao điểm d và (P): \(x^2=6x-9\Leftrightarrow x^2-6x+9=0\)

Do pt có nghiệm kép \(x=3\) nên d có đúng 1 điểm chung với (P)

b/ Pt hoành độ giao điểm: \(x^2-2mx+2m+3=0\)

Để biểu thức đề bài xác định và pt có 2 nghiệm

\(\Rightarrow\left\{{}\begin{matrix}\Delta'=m^2-2m-3\ge0\\x_1+x_2=2m\ge0\\x_1x_2=2m+3\ge0\end{matrix}\right.\) \(\Rightarrow m\ge3\)

\(\sqrt{x_1}+\sqrt{x_2}=2\sqrt{3}\)

\(\Leftrightarrow x_1+x_2+2\sqrt{x_1x_2}=12\)

\(\Leftrightarrow2m+2\sqrt{2m+3}=12\)

\(\Leftrightarrow2m+3+2\sqrt{2m+3}-15=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{2m+3}=3\\\sqrt{2m+3}=-5\left(l\right)\end{matrix}\right.\) \(\Rightarrow m=3\) (thỏa mãn)

30 tháng 1 2019

Hoành độ giao điểm của (d) và (P) là nghiệm của phương trình

\(x^2=\left(2m-1\right)x-2m+1\)

\(\Leftrightarrow x^2-\left(2m-1\right)x+2m-1=0\)(1)

  Để (d) cắt (P) tại 2 điểm phân biệt thì pt (1) phải có 2 nghiệm phân biệt

Tức là \(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-1\right)>0\) 

                        \(\Leftrightarrow\left(2m-1\right)\left(2m-5\right)>0\)

                         \(\Leftrightarrow\orbr{\begin{cases}m< \frac{1}{2}\\m>\frac{5}{2}\end{cases}}\)

Theo hệ thức Vi-ét có : \(\hept{\begin{cases}x_1+x_2=2m-1\\x_1x_2=2m-1\end{cases}}\)

Vì \(x_1< \frac{3}{2}< x_2\)

\(\Rightarrow\left(x_1-\frac{3}{2}\right)\left(x_2-\frac{3}{2}\right)< 0\)

\(\Leftrightarrow x_1x_2-\frac{3}{2}\left(x_1+x_2\right)+\frac{9}{4}< 0\)

\(\Leftrightarrow2m-1-\frac{3}{2}\left(2m-1\right)+\frac{9}{4}< 0\)

\(\Leftrightarrow2m-1-3m+\frac{3}{2}+\frac{9}{4}< 0\)

\(\Leftrightarrow-m< -\frac{11}{4}\)

\(\Leftrightarrow m>\frac{11}{4}\)

6 tháng 7 2020

b) Hoành độ giao điểm của parabol (P) và đường thẳng d là nghiệm của phương trình:

\(x^2=2\left(m+3\right)x-2m-5\Leftrightarrow x^2-2\left(m+3\right)x+2m+5=0\) (1)

\(\Delta'=\left(m+3\right)^2-\left(2m+5\right)=m^2+6m+9-2m-5=m^2+4m+4=\left(m+2\right)^2\)

Phương trình (1) có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta'>0\)

\(\Delta'=\left(m+2\right)^2\ge0,\forall m\)

\(\Leftrightarrow\) \(\left(m+2\right)^2\ne0\Leftrightarrow m\ne-2\)

=> (P) cắt (d) tại 2 điểm phân biệt khi \(m\ne-2\)

Theo định lí Vi-ét: \(\left\{{}\begin{matrix}S=x_1+x_2=2\left(m+3\right)=2m+6\\P=x_1x_2=2m+5\end{matrix}\right.\)

\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\)

\(\Leftrightarrow\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}=\frac{4}{3}\)

\(\Rightarrow\left(\frac{\sqrt{x_2}+\sqrt{x_1}}{\sqrt{x_1x_2}}\right)^2=\frac{16}{9}\)

\(\Leftrightarrow\frac{x_2+2\sqrt{x_1x_2}+x_1}{x_1x_2}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6+2\sqrt{2m+5}}{2m+5}=\frac{16}{9}\)

\(\Leftrightarrow32m+80=18m+54+18\sqrt{2m+5}\)

\(\Leftrightarrow18\sqrt{2m+5}=14m+26\)

\(\Leftrightarrow\sqrt{2m+5}=\frac{7}{9}m+\frac{13}{9}\) (2)

ĐK: \(\left\{{}\begin{matrix}\frac{7}{9}m+\frac{13}{9}\ge0\\m\ne-2\end{matrix}\right.\Leftrightarrow m\ge-\frac{13}{7}\)

Bình phương 2 vế của phương trình (2):

\(2m+5=\frac{49}{81}m^2+\frac{182}{81}m+\frac{169}{81}\)

\(\Leftrightarrow\frac{49}{81}m^2+\frac{20}{81}m-\frac{236}{81}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\left(TM\right)\\m=-\frac{118}{49}\left(l\right)\end{matrix}\right.\)

Vậy m = 2 thỏa mãn đề bài

May mà nghiệm đẹp, phương trình xấu quá nên còn tưởng làm sai ;w;

12 tháng 2 2020

Ta có \(\Delta'=\left(-m\right)^2-1\left(2m-1\right)\)

                = \(m^2-2m+1=\left(m-1\right)^2\)

Phương trình có 2 nghiệm phân biệt x1,x2\(\Leftrightarrow\Delta'>0\Leftrightarrow\left(m-1\right)^2>0\Leftrightarrow m\ne1\)

Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}}\)

Ta có \(\left|x_1-x_2\right|=16\Leftrightarrow\left(x_1-x_2\right)^2=256\)\(\Leftrightarrow x_1^2-2x_1x_2+x_2^2=256\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=256\)

ĐẾN ĐÂY THÌ BẠN THAY VÀO RỒI TỰ LÀM TIẾP NHÉ. HỌC TỐT

5 tháng 4 2021

Ta có:

\(x^2-2\left(m+5\right)x+2m+9=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2m-9\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=2m+9\end{cases}}\)

Thế vô làm nốt

AH
Akai Haruma
Giáo viên
24 tháng 5 2018

Bài 1:
Theo định lý Viete thì: \(\left\{\begin{matrix} x_1+x_2=\frac{1}{3}\\ x_1x_2=\frac{-2}{3}\end{matrix}\right.\)

Do đó: \(P=x_1^2+x_2^2=(x_1+x_2)^2-2x_1x_2=(\frac{1}{3})^2-2.\frac{-2}{3}=\frac{13}{9}\)

Bài 2:

a) (d) đi qua điểm $(-1,5)$ nên:

\(5=2m(-1)+1\Leftrightarrow m=-2\)

b)

PT hoành độ giao điểm: \(x^2-2mx-1=0\)

Để hai đths cắt nhau tại hai điểm pb thì pt trên phải có hai nghiệm phân biệt. Điều này xảy ra khi \(\Delta'=m^2+1>0\) (luôn đúng với mọi $m$)

Áp dụng định lý Viete: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=-1\end{matrix}\right.\)

Khi đó: \(x_1^2+x_2^2-x_1x_2=7\)

\(\Leftrightarrow (x_1+x_2)^2-2x_1x_2-x_1x_2=7\)

\(\Leftrightarrow (x_1+x_2)^2-3x_1x_2=7\)

\(\Leftrightarrow 4m^2+3=7\Leftrightarrow m^2=1\Leftrightarrow m=\pm 1\) (t/m)

Vậy \(m=\pm 1\)