K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2022

Equation of the intersection of (P) and (d) is:

\(x^2=\left(m+1\right)x-m\) \(\Leftrightarrow x^2-\left(m+1\right)x+m=0\)  (1)\(a=1;b=-\left(m+1\right);c=m\)

We can see that \(a+b+c=1-\left(m+1\right)+m=0\) so the equation (1) has 2 roots: \(x_1=1;x_2=\dfrac{c}{a}=m\)

We have \(y_1=x_1^2=1^2=1\)\(y_2=x_2^2=m^2\)

Thus, \(y_1+y_2=1+m^2\)

Because \(m^2\ge0\Leftrightarrow m^2+1\ge1\) or \(y_1+y_2\ge1\). "=" happens when \(m=0\)

In conclusion, in order to minimize the value of \(y_1+y_2\), m must be equal to 0.