K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2017

Đồ thị của hàm số y = ax + b ( a khác 0)

a) xa =-1 =>ya =1/2.(-1)^2 =1/2=> A(-1;1/2)

xb=2 =>yb =1/2.2^2 =2=> B(2;2)

\(\left\{{}\begin{matrix}\dfrac{1}{2}=-m+n\\2=2m+n\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-2m+2n=1\\2m+n=2\end{matrix}\right.\)=> n=1; m =1/2

b) \(AB=\sqrt{\left(x_b-x_a\right)^2+\left(y_b-y_a\right)^2}=\sqrt{3^2+\left(\dfrac{3}{2}\right)^2}=\sqrt{\dfrac{3^2\left(4^2+1\right)}{4^2}}=\dfrac{3\sqrt{17}}{4}\)\(S\Delta_{AOB}=\dfrac{1}{2}\left(\left|x_a\right|+\left|x_b\right|\right)\left(y_b-y_a\right)=\dfrac{1}{2}\left(1+2\right).\left(2-\dfrac{1}{2}\right)=\dfrac{1}{2}.3.\dfrac{3}{2}=\left(\dfrac{3}{2}\right)^2\)\(S_{\Delta AOC}=\dfrac{1}{2}OH.AB\)

\(OH=2.\dfrac{\dfrac{9}{4}}{\dfrac{3\sqrt{17}}{4}}=\dfrac{6}{\sqrt{17}}=\dfrac{6\sqrt{17}}{17}\)

12 tháng 5 2023

pt hoành độ giao điểm của (p) và (d) là: 

x2= 2(m+1)x -3m+2 ⇔ x-2(m+1)x +3m-2 =0(1)

a/ Thay m=3 vào pt (1) ta được: x2-8x+7=0(1')

pt (1') có: a+b+c=1-8+7=0

⇒x1=1; x2=\(\dfrac{c}{a}\)=7.

b/ pt (1) có:

Δ'= [-(m+1)]2- (3m-2)

= m2+2m+1-3m+2

=m2-m+3

=[(m-2.\(\dfrac{1}{2}\).m+\(\dfrac{1}{4}\))-\(\dfrac{1}{4}\)+3]

=(m-\(\dfrac{1}{2}\))2+\(\dfrac{11}{4}\)\(\dfrac{11}{4}\)>0 với mọi m

⇒pt(1)luôn có hai nghiệm phân biệt với mọi m

⇒(p) và (d) luôn cắt nhau tại hai điểm phân biệt với mọi m

 

 

17 tháng 5 2023

Cảm ơn bạn nhưng mình học qua cái đấy rồi.

4 tháng 4 2017

a) ta có pt hoành độ giao điểm: \(2x^2=x+1\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)

tại x= 1 thì ta có tọa độ giao điểm A(1;2)

tại x=\(\dfrac{-1}{2}\) thì ta có tọa độ giao điểm B(\(\dfrac{-1}{2};\dfrac{1}{2}\))

còn câu b) để từ từ mình suy nghĩ rồi giải sau

6 tháng 4 2017

mình làm ra được câu b rồi

ta có pt hđgđ

\(2x^2=2mx-m-2x+2\)

\(\Leftrightarrow2x^2-\left(2m-2\right)x+\left(m-2\right)=0 \)

\(\Delta=m^2-4m+5>0\)

\(\Rightarrow X_A=\dfrac{m-1-\sqrt{m^2-4m+5}}{2};X_B=\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\)

\(\Rightarrow Y_A=2\left(\dfrac{m-1-\sqrt{m^2-4m+5}}{2}\right)^2;Y_B=2\left(\dfrac{m-1+\sqrt{m^2-4m+5}}{2}\right)^2\)

a: Khi m=2 thì \(y=-3x+2^2=-3x+4\)

Phương trình hoành độ giao điểm là:

\(x^2=-3x+4\)

=>\(x^2+3x-4=0\)

=>(x+4)(x-1)=0

=>\(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

Thay x=-4 vào (P), ta được:

\(y=\left(-4\right)^2=16\)

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: (d) cắt (P) tại A(-4;16) và B(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=-3x+m^2\)

=>\(x^2+3x-m^2=0\)

\(\text{Δ}=3^2-4\cdot1\cdot\left(-m^2\right)=4m^2+9>=9>0\forall m\)

=>(d) luôn cắt (P) tại hai điểm phân biệt