Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để (P) và (d) tiếp xúc với nhau thì phương trình \(\frac{-3x^2}{4}=\left(m-2\right)x+3\) có 1 nghiệm
\(\Leftrightarrow3x^2+\left(4m-8\right)x+12=0\)
Phương trình này có nghiệm kép khi:
\(\Delta'=\left(2m-4\right)^2-3.12=0\)
\(\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=5\\m=-1\end{cases}}\)
Với m = 5 thì tọa độ giao điểm là: \(\left(-2;-3\right)\)
Với m = -1 thì tọa độ giao điểm là: \(\left(2;-3\right)\)
Nghiệm kép \(\Delta=0\Rightarrow\left(m-2\right)^2-4\frac{3.}{4}.3=0\Rightarrow\)\(\hept{\begin{cases}m-2=3\\m-2=-3\end{cases}}\)
\(\hept{\begin{cases}n=5\\m=-1\end{cases}}\)
a)Để ĐTHS song song với đường thẳng thì\(\hept{\begin{cases}5-2m=\frac{-1}{3}\\1-m\ne-2\end{cases}}\Rightarrow\)\(m=\frac{8}{3}\)
a, bạn tự vẽ nhé
b, Gọi ptđt (D1) có dạng y = ax + b
(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)
=> (D1) : y = x/2 + b
Hoành độ giao điểm tm pt
\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)
\(\Delta'=1-\left(-4b\right)=1+4b\)
Để (D1) tiếp xúc (P) hay pt có nghiệm kép
\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)
suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)
toạ độ M là tương giao của cái nào bạn ?
Hoành độ giao điểm của (P) và (d) là nghiệm phương trình: \(-\frac{x^2}{4}=x+m\) <=> \(x^2+4x+4m=0\)(1)
Đường thẳng d: y = x + m tiếp xúc với (P) <=> (1) có 1 nghiệm
<=> \(\Delta'=0\)<=> \(4-4m=0\)<=> m = 1
Kết luận:...