K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2020

Giải phương trình hoành đọ giao điểm ta đc

\(2x^2=4x-m+3\Leftrightarrow2x^2-4x+m-3\)

Theo viet ta có\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=\frac{m-3}{2}\end{matrix}\right.\)

\(x_1^2+x_2^2+x_1.x_2=8\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=8\Leftrightarrow2^2-\frac{m-3}{2}=8\Leftrightarrow m=-5\)

12 tháng 6 2020

Vì P đi qua M nên thay tọa độ vào ta được

\(18=a\left(-3\right)^2\Rightarrow a=2\)

Vậy phương trình P là \(y=2x^2\)

26 tháng 5 2021

a) \(A\in\left(d\right)\Rightarrow9=-3m+1-m^2\)

\(\Leftrightarrow m^2+3m+8=0\) \(\Leftrightarrow\left(m+\dfrac{3}{2}\right)^2+\dfrac{23}{4}=0\)(vn)

Vậy không tồn tại m để (d) đi qua A(-1;9)

b) Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=3mx+1-m^2\)

\(\Leftrightarrow2x^2-3mx-1+m^2=0\)

\(\Delta=9m^2-4.2\left(-1+m^2\right)=m^2+8>0\) với mọi m

=> Pt luôn có hai nghiệm pb => (d) luôn cắt (P) tại hai điểm pb

Theo viet:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3m}{2}\\x_1x_2=\dfrac{m^2-1}{2}\end{matrix}\right.\)

\(x_1+x_2=2x_1x_2\)

\(\Leftrightarrow\dfrac{3m}{2}=2.\dfrac{m^2-1}{2}\) \(\Leftrightarrow2m^2-3m-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy...

9 tháng 6 2022

Tất cảToánVật lýHóa họcNgữ vănĐịa lýGiáo dục công dân

Bài 1: 

a) Để (d) đi qua A(1;-9) thì

Thay x=1 và y=-9 vào (d), ta được:

\(3m\cdot1+1-m^2=-9\)

\(\Leftrightarrow-m^2+3m+1+9=0\)

\(\Leftrightarrow m^2-3m-10=0\)

\(\Leftrightarrow m^2-5m+2m-10=0\)

\(\Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)

Vậy: Để (d) đi qua A(1;-9) thì \(m\in\left\{5;-2\right\}\)

26 tháng 7 2021

a) Đường thẳng (d) đi qua A(1; 0) => x = 1 và y = 0

DO đó: 0 = m - 3 <=> m = 3

b) pt hoành độ giao điểm giữa (P) và (d) là:

 x2 = mx - 3 <=> x2 - mx + 3 = 0 (1)

\(\Delta\)= (-m)2 - 3.4 = m2 - 12

Để (P) cắt (d) tại 2 điểm pb <=>  pt (1) có 2 nghiệm pb 

<=> \(\Delta\)> 0 <=> m2 - 12 > 0 <=> \(\orbr{\begin{cases}m>2\sqrt{3}\\m< -2\sqrt{3}\end{cases}}\)

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=3\end{cases}}\)

Theo bài ra, ta có: |x1 - x2| = 2

<=> x12 - 2x1x2 + x22 = 4

<=> (x1 + x2)2 - 4x1x2 = 4

<=> m2 - 4.3 = 4

<=> m2 - 16 = 0

<=> (m  - 4)(m + 4) = 0

<=> \(\orbr{\begin{cases}m=4\\m=-4\end{cases}}\)(tm)

AH
Akai Haruma
Giáo viên
15 tháng 4 2023

Lời giải:

PT hoành độ giao điểm:

$2x^2-4x-m=0(*)$

Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ có 2 nghiệm $x_1,x_2$.

Điều này xảy ra khi $\Delta'=(-2)^2+2m>0\Leftrightarrow m> -2$

Áp dụng định lý Viet: 

$x_1+x_2=2$

$x_1x_2=\frac{-m}{2}$

Khi đó: $x_1^2+x_2^2=3$

$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=3$

$\Leftrightarrow 2^2-2.\frac{-m}{2}=3$

$\Leftrightarrow 4+m=3$

$\Leftrightarrow m=-1$ (tm)

15 tháng 4 2023

Cảm ơn ạ! 

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

8 tháng 5 2022

Hoành độ giao điểm (P) ; (d) tm pt 

\(x^2-\left(m-2\right)x-3=0\)

\(\Delta=\left(m-2\right)^2-4\left(-3\right)=\left(m-2\right)^2+12>0\)

Vậy (P) cắt (d) tại 2 điểm pb 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m-2\left(1\right)\\x_1x_2=-3\left(2\right)\end{matrix}\right.\)

Vì \(x_1x_2=-3< 0\)nên pt có 2 nghiệm trái dấu 

đk : \(\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\)

\(-x_1=3x_2\Leftrightarrow x_1+3x_2=0\)(3) 

Từ (1) ; (3) \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1+3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_2=-\left(m-2\right)\\x_1=m-2-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{-\left(m-2\right)}{2}\\x_1=\dfrac{2m-4+m-2}{2}=\dfrac{3m-6}{2}\end{matrix}\right.\)

Thay vào (2) ta được \(\dfrac{-3\left(m-2\right)^2}{4}=-3\Leftrightarrow\left(m-2\right)^2=4\Leftrightarrow\left[{}\begin{matrix}m=4\\m=0\end{matrix}\right.\)

 

 

PTHĐGĐ là:

x^2-(m-2)x-3=0

a*c<0

=>(P) luôn cắt (d) tại hai điểm pb

Theo đề, ta có: 3x2=-x1 và x1+x2=m-2

=>x1+3x2=0 và x1+x2=m-2

=>2x2=-m+2 và 3x2=-x1

=>x2=-1/2m+1 và x1=-3x2=3/2m-3

x1x2=-3

=>-1/2(m-2)*3/2(m-2)=-3

=>3/4(m-2)^2=3

=>(m-2)^2=4

=>m=4 hoặc m=0