K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 5 2021

Lời giải:

a) $y_M=\frac{-x_M^2}{2}=\frac{-(-3)^2}{2}=\frac{-9}{2}$

Đường thẳng $OM$ có dạng: $y=ax$

$\Rightarrow y_M=ax_M\Leftrightarrow \frac{-9}{2}=a.(-3)$

$\Rightarrow a=\frac{3}{2}$

Vậy ĐT $OM$ là: $y=\frac{3}{2}x$

b) Gọi PTĐT $CE$ có dạng $y=ax+b$

PT hoành độ giao điểm giữa $(P)$ và $CE$ là:

$\frac{-x^2}{2}-ax-b=0$

$\Leftrightarrow x^2+2ax+2b=0(*)$

$(P)$ và $CE$ cắt nhau tại 2 điểm có hoành độ $-1;2$ nghĩa là PT $(*)$ nhân $x=-1$ và $x=2$ là nghiệm

\(\Rightarrow \left\{\begin{matrix} 1-2a+2b=0\\ 4+4a+2b=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-1}{2}\\ b=-1\end{matrix}\right.\)

Vậy PTĐT $CE$ có dạng $y=-\frac{1}{2}x-1$

9 tháng 5 2022

Tọa độ điểm `A` có `x=2` và `in (d_1)`

  `=>` Thay `x=2` vào `(d_1)` có: `y=2+2=4`

           `=>A(2;4)`

Gọi ptr đường thẳng `(d_2)` có dạng: `y=ax + b`

 Vì `(d_2) \bot (d_1)=>a.a'=-1`

                             `=>a.1=-1<=>a=-1`

Thay `A(2;4)` và `a=-1` vào `(d_2)` có:

         `4=-1.2+b<=>b=6`

Vậy ptr đường thẳng `(d_2)` là: `y=-x+6`

3 tháng 2 2021

1.

\(x=-1\Rightarrow y=1\Rightarrow A\left(-1;1\right)\)

\(x=2\Rightarrow y=4\Rightarrow B\left(2;4\right)\)

Phương trình đường thẳng AB có dạng \(y=ax+b\) đi qua A và B nên ta có hệ:

\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\Rightarrow y=x+2\left(AB\right)\)

2.

\(\left(d\right)//\left(AB\right)\Rightarrow x-y+c=0\left(d\right)\)

Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\):

\(x+c=x^2\)

\(\Leftrightarrow x^2-x-c=0\)

\(\Delta=1+4c=0\Leftrightarrow c=-\dfrac{1}{4}\)

\(\Rightarrow x-y-\dfrac{1}{4}=0\left(d\right)\)

6 tháng 2 2021

- Thay x = -1 và x = 2 vào hàm số ( P ) ta được :

\(\left[{}\begin{matrix}y=1\\y=4\end{matrix}\right.\)

=> Đường thẳng AB đi qua 2 điểm ( -1; 1 ) ; ( 2 ; 4 )

- Gọi đường thẳng AB có dạng  y = ax + b

- Thay hai điểm trên lần lượt vào phương trình đường thẳng ta được :

\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy phương trình đường thẳng AB có dạng : y = x + 2 .

5 tháng 9 2021

mn ơi làm bài này giùm em vs 

9 tháng 5 2021

a, - Thay tọa độ hai điểm xA, xB vào (P) ta được : \(\left\{{}\begin{matrix}y_A=2\\y_B=\dfrac{1}{2}\end{matrix}\right.\)

=> Tọa độ 2 điểm A, B lần lượt là : \(\left(2;2\right),\left(-1;\dfrac{1}{2}\right)\) .

b, - Gọi phương trình đường thẳng AB có dạng : y = ax + b .

- Thay tọa độ A, B vào phương trình ta được hệ : \(\left\{{}\begin{matrix}2a+b=2\\-a+b=\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)

- Thay lại a, b vào phương trình ta được : \(y=\dfrac{1}{2}x+1\)

Vậy ...