\(\frac{5}{6}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2015

Trục đối xứng của parabol là đường thẳng x = -b/(2a) => -b/(2a) = 5/6

=> b = -5/3 a      (1)

đồ thị đia qua M(2,4) => 4 = a.22  + b,2 + 2

=> 4a + 2b = 2     (2)

Thay (1) vào (2):

    4a - 10/3 a = 2

=> a = ...

=> b = -5/3 a

DD
6 tháng 9 2021

\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)

\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

\(a^2-b^2=3^2-2^2=5\).

6 tháng 9 2021

Vào thăm trang cá nhân của tớ nhá

13 tháng 12 2017

Chương 2: HÀM SỐ BẬC NHẤT VÀ  BẬC HAI

23 tháng 11 2021

Do P đi qua điểm A(-2;0); B(2;-4) và nhận đường thẳng x=1 là trục đối xứng

Ta có hệ phương trình:

⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a(−2)2+b(−2)+c=0a(2)2+2b+c=−4−b2a=1{a(−2)2+b(−2)+c=0a(2)2+2b+c=−4−b2a=1

⇔⎧⎪⎨⎪⎩4a+−2b+c=0(1)4a+2b+c=−42a+b=0(3)⇒2(2a+b)+c=−4(2)⇔{4a+−2b+c=0(1)4a+2b+c=−42a+b=0(3)⇒2(2a+b)+c=−4(2)

Thế (3) vào (2)

⇒0+c=−4⇒c=−4⇒0+c=−4⇒c=−4

⇒⎧⎪⎨⎪⎩a=12b=−1c=−4

23 tháng 12 2015

(P): ax2+bx+c có đỉnh $I(-\frac{b}{2a};-\frac{\Delta}{4a})$, trục đối xứng $x=-\frac{b}{2a}$

a) b=-2a, $\Delta=b^2-4ac=-8a$ nên a-c=-2. Lại có (P) qua M nên a-b+c=-2. Vậy a=-1,b=2,c=1 nên (P):-​-​x2+2x+1

b) b=-4a. Lại có (P) qua A,B nên a+b+c=-6, 16a+4b+c=3. Suy ra a=3, b=-12, c=3. Vậy (P):3x2-12x+3

3 tháng 8 2019

1, y xác định \(\Leftrightarrow\left\{{}\begin{matrix}3-4x\ge0\\x^2-3x+2\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{3}{4}\\x\ne1,x\ne2\end{matrix}\right.\Leftrightarrow x\le\frac{3}{4}\)

2, Tập xác định: D = R\{\(\pm1\)}

Xét f(-x) = \(\frac{-\left(-x\right)^6+5\left(-x\right)^4-3\left(-x\right)^2}{\left(-x\right)^2-1}=\frac{-x^6+5x^4-3x^2}{x^2-1}=f\left(x\right)\)

\(\Rightarrow f\left(x\right)\) là hàm chẵn

3,

a, (P) có trục đối xứng x = - 2 \(\Leftrightarrow-\frac{b}{2a}=-2\Leftrightarrow-4a+b=0\left(1\right)\)

(P) đi qua A(-1;0) \(\Rightarrow x=-1;y=0\)thay vào (P) ta có:

\(a-b+3=0\Leftrightarrow a-b=-3\left(2\right)\)

Từ (1), (2) ta có a = 1, b = 4

\(\Rightarrow\)(P): \(x^2+4x+3\)

b, Tập xác định: D = R

BBT

x \(-\infty\) -2 \(+\infty\)

y \(-\infty\) \(+\infty\)

-1

Bề lõm của nó hướng lên trên, bạn chịu khó vẽ nốt mũi tên đi lên và xuống giúp mình nhé

3 tháng 8 2019

Ở BBT là khi x = -2 thì y = -1 nhé

13 tháng 4 2017

a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.

Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2

Giải hệ phương trình: ta được a = 2, b = 1.

Parabol có phương trình là: y = 2x2 + x + 2.

b) Giải hệ phương trình:

Parabol: y = x2 - x + 2.

c) Giải hệ phương trình:

Parabol: y = x2 - 4x + 2.

d) Ta có:

Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.


Xác định phương trình hàm số bậc hai Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 ) b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 ) c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 ) d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 ) e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 ) f , Đi qua A ( 1, 1 )...
Đọc tiếp

Xác định phương trình hàm số bậc hai

Cho ( P) y = ax2 + bx +c . Xác định a , b , c biết

a, Có đỉnh I ( 3 , 6 ) và đi qua M ( 1 , -10 )

b , đò thị hàm số nhận đồ thị x =\(-\frac{4}{3}\) làm trục đối xứng và đi qua A (0 , -2 ) B ( -1 , -7 )

c , Đi qua A ( -2 , 7 ) B ( -1 , -2 ) C ( 3 , 2 )

d , Có đỉnh I ( -3 , 0 )và đi qua M ( 0 , -4 )

e , Có đỉnh I ( -1 , 1 ) và đi qua N ( \(\frac{1}{2}\) , 0 )

f , Đi qua A ( 1, 1 ) B ( -1 ,9 ) c ( 0 , 3 )

g , Có đỉnh I ( 1 , 5 ) và đi qua A ( -1 , 1 )

h , có giá trị của trục bằng -1 và đi qua A ( 2 , -1) B ( 0 , 3 )

i , Đi qua A ( -1 , 8 0 , B ( 2 , -1 ) , C ( 1 , 0 )

j , Có đỉnh I ( 2 , 1 ) và cắt oy tại điểm có tung độ bằng 7

k ,Có giá trị lớn nhất bằng 2 và đi qua A ( 1 , 1 ) N ( -1 , 1 0

e, có giá trị nhỏ nhất bằng \(\frac{3}{4}\) khi x = \(\frac{1}{2}\)và nhận giá trị bằng 1 khi x = 1

m , Có đỉnh I ( 3 , 4 ) và đi qua M ( -1 ,0)

n , Có trục đối xứng x =1 và đi qua M ( 0 , 2 ) N ( 3 , 4 )

o , Có đỉnh \(\in\) ox , trục đói xứng x =2 đi qua N ( 0 , 2 )

p , Đi qua M ( 2 , -3 ) có đỉnh I ( 1 , -4 )

0
4 tháng 10 2020
https://i.imgur.com/nfyEFWw.png
4 tháng 10 2020

a, Do \(\left(P\right)\) đi qua \(A\left(1;-3\right)\) nên \(a+b+1=-3\Leftrightarrow a+b=-4\left(1\right)\)

\(\left(P\right)\) có trục đối xứng là \(x=\frac{5}{2}\)

\(\Rightarrow\) Đỉnh của \(\left(P\right)\) có hoành độ là \(x=\frac{5}{2}\Leftrightarrow-\frac{b}{2a}=\frac{5}{2}\Leftrightarrow5a+b=0\left(2\right)\)

Giải hệ hai phương trình \(\left(1\right);\left(2\right)\) ta được \(\left\{{}\begin{matrix}a=1\\b=-5\end{matrix}\right.\)

\(\Rightarrow y=x^2-5x+1\left(P\right)\)

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé