Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đường thẳng d: y=x-2m+3 tiếp xúc (P)
\(\Leftrightarrow\)PT \(x^2-2x+1=x-2m+3\) có nghiệm kép
\(\Leftrightarrow x^2-3x-2+2m=0..có..\Delta=0\\ \Leftrightarrow9+8-8m=0\Leftrightarrow m=\dfrac{17}{8}\)
b)cắt (P) tại 2 điểm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m< \dfrac{17}{8}\)(1)
2 điểm có hoành độ dương \(\Rightarrow\left\{{}\begin{matrix}-\dfrac{b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3>0\\-2+2m>0\end{matrix}\right.\Rightarrow}}m>-1\left(2\right)\)
*xl nha ct (2) mik viết mãi vx bị lỗi...*
từ (1) và (2) =>-1<m<17/8
c)cắt tại 2 điểm phân biệt =>m<17/8
\(x_1^3+x_2^3-4\left(x_1+x_2\right)=5\Rightarrow\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)-4\left(x_1+x_2\right)=5\\ \Rightarrow3\cdot\left(3^2-3\left(2m-2\right)\right)-4\cdot3=5\Rightarrow m=-\dfrac{1}{3}\left(TM\right)\)
Để (Pm) là đồ thị của hàm số bậc hai thì m-1<>0
hay m<>1
Phương trình hoành độ giao điểm là:
\(\left(m-1\right)x^2+\left(2m-4\right)x-5-4x+m=0\)
\(\Leftrightarrow\left(m-1\right)x^2+\left(2m-8\right)x+m-5=0\)
\(\text{Δ}=\left(2m-8\right)^2-4\left(m^2-6m+5\right)\)
\(=4m^2-32m+64-4m^2+24m-20\)
\(=-8m+44\)
Để phương trình có hai nghiệm phân biệt thì -8m+44>0
=>-8m>-44
hay m<11/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2-4x_1x_2=4\)
\(\Leftrightarrow\dfrac{\left(2m-8\right)^2}{\left(m-1\right)^2}-4\cdot\dfrac{m-5}{m-1}=4\)
\(\Leftrightarrow\left(2m-8\right)^2-4\left(m^2-6m+5\right)=4\left(m-1\right)^2\)
\(\Leftrightarrow4m^2-32m+64-4m^2+24m-20=4\left(m^2-2m+1\right)\)
\(\Leftrightarrow4m^2-8m+4-8m-44=0\)
\(\Leftrightarrow4m^2-16m-40=0\)
\(\Leftrightarrow m^2-4m-10=0\)
\(\Leftrightarrow\left(m-2\right)^2=14\)
hay \(m\in\left\{\sqrt{14}+2;-\sqrt{14}+2\right\}\)
hs cat õ tai 2 diem phan biet =>y=0
=>pt<=>x2+2(m-1)x+m+4m-3=0
pt cat õ tai 2 diem phan biet =>(m-1)2-(m+4m-3)>0
<=> m2-7m+4>0
=>m>.... m<.....
ta co x1=x2+2
=> x1-x2=2 =>(x1-x2)2=4 <=>(x1+x2)2 -4x1x2=4
theo viet ta co x1+x2=..... x1x2=..........
thay vao pt tren giai va ket hop nghiem
mk chỉ cho cách lm ; bn tự lm cho bt nha
câu a : lập bảng sét dấu tìm được \(x\) để \(y>0;y< 0\)
tiếp là đưa nó về dạng bình phương 1 số cộng 1 số \(\left(n^2+m\right)\) rồi tìm \(y_{min}\)
câu b : giao điểm của \(\left(P\right)\) và đường thẳng \(\left(d\right):y=2x+1\)
là nghiệm của hệ phương trình : \(\left\{{}\begin{matrix}y=x^2-2x-1\\y=2x+1\end{matrix}\right.\)
a/ \(\Delta'=1-m\ge0\Rightarrow m\le1\)
Để biểu thức xác định \(\Rightarrow f\left(0\right)\ne0\Rightarrow m\ne0\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)
Mặt khác do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1^2-2x_1+m=0\\x_2^2-2x_1+m=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-3x_1+m=-x_1\\x_2^2-3x_2+m=-x_2\end{matrix}\right.\)
Thay vào ta được:
\(-\frac{x_1}{x_2}-\frac{x_2}{x_1}\le2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1x_2}+2\ge0\)
\(\Leftrightarrow\frac{x_1^2+x_2^2+2x_1x_2}{x_1x_2}\ge0\Leftrightarrow\frac{\left(x_1+x_2\right)^2}{x_1x_2}\ge0\)
\(\Leftrightarrow\frac{4}{m}\ge0\Rightarrow m>0\)
Vậy \(0< m\le1\)
b/ \(\Delta'=m^2-m-2\ge0\Rightarrow\left[{}\begin{matrix}m\ge2\\m\le-1\end{matrix}\right.\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\)
\(x_1^3+x_2^3\le16\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-16\le0\)
\(\Leftrightarrow8m^3-6m\left(m+2\right)-16\le0\)
\(\Leftrightarrow4m^3-3m^2-6m-8\le0\)
\(\Leftrightarrow\left(m-2\right)\left(4m^2+5m+4\right)\le0\)
\(\Leftrightarrow m\le2\) (do \(4m^2+5m+4=4\left(m+\frac{5}{8}\right)^2+\frac{39}{16}>0;\forall m\))
Kết hợp ta được \(\left[{}\begin{matrix}m=2\\m\le-1\end{matrix}\right.\)
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>-m=4
hay m=-4
b: PTHĐGĐ là:
\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Leftrightarrow x^2-4x+2m-2=0\)
\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)
\(=16-8m+8=-8m+24\)
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
hay m<3
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)
=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)
\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)
\(\Leftrightarrow m^2-6m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)