Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)
\(\left(x+2\right)\ne0\Rightarrow x\ne-2\)
\(\left(x-2\right)\ne0\Rightarrow x\ne2\)
Vậy để biểu thức xác định thì : \(x\ne\pm2\)
b) để C=0 thì ....
1, c , bn Nguyễn Hữu Triết chưa lm xong
ta có : \(/x-5/=2\)
\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)
thay x = 7 vào biểu thứcC
\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...
thay x = 3 vào C
\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)
=> ko tìm đc giá trị C tại x = 3
a)
2x-4=2(x-2)
2x+4=2(x+2)
x
Để P xác định thì
[2(x-2) => [2(x+2)
[2(x+2) =>[ 2(x-2)
[ (x-2)(x+2) => [(x+2)(x-2)
Vay 2(x+2) , 2(x-2), (x+2)(x-2) thi P xác định
a) Phân thức xác định khi: \(\Leftrightarrow x-3\ne3\Leftrightarrow x\ne3\)
ĐKXĐ: \(x\ne3\)
b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)
c) Thay x = -4 vào phân thức đã thu gọn, ta có:
\(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)
Vậy: tại x = -4 là \(\frac{8}{7}\)
a) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
Phân thức xác định khi: \(\left(x-3\right)\left(x+3\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x-3=0\\x+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\x=-3\end{cases}}\Leftrightarrow x\ne\pm3\)
ĐKXĐ: \(x\ne\pm3\)
b) \(A=\frac{2x^2+6x}{x^2-9}=\frac{2x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2x}{x-3}\)
c) \(A=\frac{2.\left(-4\right)}{\left(-4\right)-3}=\frac{8}{7}\)
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
a) ĐKXD: \(x+2\ne0\)và \(x^2+4x+4\ne0\)và \(x^2-4\ne0\)và \(2-x\ne0\)
\(\Leftrightarrow x\ne-2\)và \(\left(x+2\right)^2\ne0\)và \(\left(x-2\right)\left(x+2\right)\ne0\)và \(x\ne2\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
+) \(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left[\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{x+2}{\left(x-2\right)\left(x+2\right)}\right]\)
\(=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}:\frac{-x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x}{\left(x+2\right)^2}.\frac{\left(x-2\right)\left(x+2\right)}{-x}\)
\(=\frac{-2x+4}{x+2}\)
b) Ta có: x-1=3 <=> x=4 Thay vào A ta được:
\(\frac{-2.4-4}{4+2}=-2\)
c)
-2x+4 x+2 -2 -2x-4 - 8
Để \(A\in Z\Leftrightarrow8⋮x+2\)
\(\Leftrightarrow x+2\inƯ\left(8\right)=\left\{\pm1;\pm4;\pm8\right\}\)
Bạn làm nốt nha
a) ĐKXĐ: x - 2 \(\ne\)0 x \(\ne\)2
x + 2 \(\ne\)0 => x\(\ne\)-2 =>x \(\ne\)\(\pm\)2 và x \(\ne\)-10
x2 - 4 \(\ne\)0 x \(\ne\)\(\pm\)2
x + 10 \(\ne\)0 x \(\ne\)-10
b) Ta có: P = \(\left(\frac{x+5}{x-2}+\frac{3x}{x+2}-\frac{4x^2}{x^2-4}\right)\cdot\frac{x^2+2x}{x+10}\)
P = \(\left(\frac{\left(x+5\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{3x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{4x^2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\left(\frac{x^2+2x+5x+10+3x^2-6x-4x^2}{\left(x-2\right)\left(x+2\right)}\right)\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\frac{x+10}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x\left(x+2\right)}{x+10}\)
P = \(\frac{x}{x-2}\)
c)Với x \(\ne\)\(\pm\)2 và x \(\ne\)-10
Ta có: x2 - x - 6 = 0
=> x2 - 3x + 2x - 6 = 0
=> x(x - 3) + 2(x - 3) = 0
=> (x + 2)(x- 3) = 0
=> \(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-2\left(ktm\right)\\x=3\end{cases}}\)
Với x = 3 => P = \(\frac{3}{3-2}=3\)
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
\(a,ĐKXĐ:x\ne\pm2\)
\(b,P=\left(\frac{x+2}{2x-4}+\frac{x-2}{2x+4}+\frac{-8}{x^2-4}\right):\frac{4}{x-2}\)
\(=\left(\frac{x+2}{2\left(x-2\right)}+\frac{x-2}{2\left(x+2\right)}+\frac{-8}{\left(x-2\right)\left(x+2\right)}\right).\frac{x-2}{4}\)
\(=\left(\frac{\left(x+2\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{\left(x-2\right)\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{\left(-8\right).2}{2\left(x-2\right)\left(x+2\right)}\right)\)\(.\frac{x-2}{4}\)
\(=\left(\frac{x^2+4x+4+x^2-4x+4-16}{2\left(x-2\right)\left(x+2\right)}\right).\frac{x-2}{4}\)
\(=\frac{2x^2-8}{2\left(x-2\right)\left(x+2\right)}.\frac{x-2}{4}\)
\(=\frac{2\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}.\frac{x-2}{4}=1.\frac{x-2}{4}=\frac{x-2}{4}\)