Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét p=3k+1=>p+2=3k+3=3(k+1) là hợp số (vô lí)
=>p=3k+2
=>p+1=3k+3=3(k+1) chia hết cho 3(1)
p là số lẻ=>p+1 là số chẵn=>p+1 chia hết cho 3(2)
từ (1);(2)=>p+1 chia hết cho 6
=>đpcm
< = > p + 1 chẵn
p chia 3 dư 2 thõa mãn p và p +2 là 2 số nguyên tố
=> p + 1 chia hết cho 3
Mà UCLN(2 ; 3) = 1
=> p + 1 chia hết cho 2.3= 6
Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2 (k thuộc N)
Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.
Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).
=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.
Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.
Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.
A=2+22+23+24+....+230
=(2+22+23)+(24+25+26)+...+(228+229+230)
=1(2+22+23)+23(2+22+23)+...+227(2+22+23)
=1.7+23.7+25.7+...+227.7
=7(1+23+25+...+227)
vì 7:7-->A:7
\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)
\(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{28}.7\)
\(=7.\left(2+2^4+...+2^{28}\right)\)
\(\Rightarrow A⋮7\)
Nếu P và P + 2 > 3 và 2 số này là số nguyên tố => P = 5
=> 5 + 1 = 6 chia hết cho 6
=> điều cần chứng minh