Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Có : 51^n có tận cùng là 1
2014^2016 = (2014^2)^1008 = ....6^2018 = ....6 có tận cùng là 6
=> 2014^2016-51^n có tận cùng là 6-1=5 => 2014^2016-51^n chia hết cho 5
2. Gọi ƯCLN (21n+4;14n+3) = d ( d thuộc N sao )
=> 21n+4 và 14n+3 đều chia hết cho d
=> 2.(21n+4) và 3.(14n+3) đều chia hết cho d
=> 42n+8 và 42n+9 đều chia hết cho d
=> 42n+9-(42n+8) chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN (21n+4;14n+3) = 1
3.
p nguyên tố > 3 nên p ko chia hết cho 3
Nếu p chia 3 dư 1 => 2p chia 3 dư 2 => 2p+1 chia hết cho 3
Mà 2p+1 > 3 => 2p+1 là hợp số
=> để 2p+1 là số nguyên tố thì p chia 3 dư 2
=> 4p chia 3 dư 8 hay 4p chia 3 dư 2
=> 4p+1 chia hết cho 3
Mà 4p+1 > 3 => 4p+1 là hợp số
=> ĐPCM
Tk mk nha
Do p>3 nên p có dạng 3k+1 hoặc 3k+2
Nếu p=3k+1=> 2p+1=2(3k+1)+1=6k+2+1=6k+3=3(2k+1) chia hết cho 3 (loại)
Vậy p=3k+2
=> 4p+1=4(3k+2)+1=12k+8+1=12k+9=3(4k+3) chia hết cho 3
Vậy 4p+1 là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p có dạnh :3k+1;3k+2
+)Nếu p=3k+2=>4p+1=4(3k+2)+1=4.3k+8+1=4.3k+9 =3.(4k+3) chia hết cho 3
=>4p+1 là hợp số (trái với giả thiết,loại)
Vậy p=3k+1 =>2p+1=2(3k+1)+1=2.3k+2+1=2.3k+3=3.(2k+1) chia hết cho 3
=>2p+1 là hợp số (đpcm)
Lần này l-i-k-e cho mình tử tế nha
vì p lá số nguyên tố >3 suy ra p có 1 trong 2 dạng sau :
p = 3k +1 hoặc p =3k +2
nếu p = 3k +1 suy ra 8p+1 = 8(3k+1)+1 =24k + 8 + 1 =24k +9 =3 (8k+3) chia hết cho 3
p = 3k +1 ( loại vì bài ra 8p +1 là số nguyên tố )
p có dạng 3k +2
với p = 3k +2 suy ra 4p +1 = 4(3k+2)+1 =12k +8+1=12k +9=3(4k+3) chia hết cho 3 .
hay 4p +1 chia hết cho 3
vậy nếu p và 8p+1 là các số nguyên tố thì 4p +1 chia hết cho 3 ( đpcm )
nhớ k đúng cho mik nhé
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)
Xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2, trong 3 số này có 1 số chia hết cho 3
Do p nguyên tố > 3 => p không chia hết cho 3 => 4p không chia hết cho 3
2p + 1 cũng là số nguyên tố > 3 => 2p + 1 không chia hết cho 3 => 2.(2p + 1) hay 4p + 2 không chia hết cho 3
=> 4p + 1 chia hết cho 3
Mà 1 < 3 < 4p + 1 => 4p + 1 là hợp số
a, p là số nguyên tố lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2
xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI
xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)
vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số
do đó 4p + 1 là hợp số ( đpcm )
p là số nguyên tố lớn hơn 3 nên p=3k+1 hoặc p=3k+2
Nếu p=3k+2 thì \(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\)
=>4p+1 là hợp số
=>Loại
=>p=3k+1
\(2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)