K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 5 2018

Lời giải:

a) Ta thấy:

\(\Delta'=(m+1)^2-2m=m^2+1\geq 1>0, \forall m\in\mathbb{R}\)

Do đó pt luôn có hai nghiệm phân biệt với mọi $m$

b) Áp dụng định lý Viete của pt bậc 2 ta có:

\(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m\end{matrix}\right.\)

Do đó: \(x_1+x_2-x_1x_2=2(m+1)-2m=2\) là một giá trị không phụ thuộc vào $m$

Ta có đpcm.

8 tháng 6 2015

\(\Delta'=\left(m+1\right)2-\left(m-4\right)=m^2+m+5=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\)voi moi m \(\Rightarrow\) pt co 2 ngiem phan biet.

theo he thuc vi-et ta co:\(x_1+x_2=\frac{-b}{a}=2\left(m+1\right);x_1.x_2=\frac{c}{a}=4-m\)

ma M=\(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=\left(x_1+x_2\right)-2\left(x_1x_2\right)\)

\(=2\left(m+1\right)-2\left(m-4\right)=10\)khong phu thuoc m

NV
27 tháng 11 2018

\(\Delta'=\left(n^2-1\right)^2+\left(6n^3+13n^2+6n-1\right)=\left(n+1\right)\left(n^3-n^2-n+1\right)+\left(n+1\right)\left(6n^2+7n-1\right)\)

\(\Rightarrow\Delta'=\left(n+1\right)\left(n^3+5n^2+6n\right)=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Phương trình có nghiệm hữu tỉ khi và chỉ khi \(\Delta'\) là số chính phương

\(\Delta'=n\left(n+3\right)\left(n+1\right)\left(n+2\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt \(n^2+3n=a\ge4\Rightarrow\Delta'=a\left(a+2\right)=a^2+2a\)

Ta có \(a^2+2a>a^2\) do \(2a>0\)

\(a^2+2a=\left(a+1\right)^2-1< \left(a+1\right)^2\)

\(\Rightarrow a^2< \Delta'=a^2+2a< \left(a+1\right)^2\)

\(\Rightarrow\Delta'\) nằm giữa hai số chính phương liên tiếp nên \(\Delta'\) không thể là số chính phương

\(\Rightarrow\) phương trình không có nghiệm hữu tỉ với mọi \(n>0\)

NV
9 tháng 4 2019

a/ Bạn tự giải

b/ \(\Delta'=-m^2+2m\)

Để pt có nghiệm thì \(\Delta'\ge0\Rightarrow-m^2+2m\ge0\Rightarrow0\le m\le2\)

Khi đó theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-2m+1=\left(m-1\right)^2\end{matrix}\right.\)

Xét \(A=\left|x_2-x_1\right|\Rightarrow A^2=\left(x_2-x_1\right)^2\)

\(A^2=x_1^2+x_2^2-2x_1x_2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(A^2=4-4\left(m-1\right)^2\le4\)

\(\Rightarrow A\le2\) (đpcm)

Dấu "=" xảy ra khi \(m-1=0\Rightarrow m=1\)