K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2017

\(\left\{{}\begin{matrix}x^2+px+pr=0\left(1\right)\\x^2+qx+qr=0\left(2\right)\end{matrix}\right.\)

Giả sử phương trình (1) có 2 nghiệm là a, b. Phương trình (2) có 2 nghiệm là b, c.

Theo vi-et ta có:

\(\left\{{}\begin{matrix}a+b=-p\left(3\right)\\ab=pr\left(4\right)\\c+b=-q\left(5\right)\\cb=qr\left(6\right)\end{matrix}\right.\)

Rồi biến đổi tiếp đi b

22 tháng 7 2020

2, (trích đề thi học sinh giỏi Bến Tre-1993)

\(a^3+a^2b+ca^2+b^3+ab^2+b^2c+c^3+c^2b+c^2a=a^2\left(a+b+c\right)+b^2\left(a+b+c\right)+c^2\left(a+b+c\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

mà a+b+c=0 => (a+b+c)(a2+b2+c2)=0 

=> đpcm

*bài này tui làm tắt, không hiểu ib 

Vừa lm xog bị troll chứ, tuk quá 

\(x-a^2x-\frac{b^2}{b^2-x^2}+a=\frac{x^2}{x^2-b^2}\)

\(\Leftrightarrow\frac{x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{a^2x\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}-\frac{b^2\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}+\frac{a\left(b^2-x^2\right)\left(x^2-b^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}=\frac{x^2\left(b^2-x^2\right)}{\left(b^2-x^2\right)\left(x^2-b^2\right)}\)

Khử mẫu : 

\(\Leftrightarrow2x^3b^2-xb^4-x^5-2a^2x^3b^2+a^2xb^4+a^2x^5-b^2x^2+b^4+2ab^2x^2-ab^4-ax^4=x^2b^2-x^4\)

Tự xử nốt, lm bài này muốn phát điên mất. 

21 tháng 4 2018

\(x^2-x+1=x^2-\frac{1}{2}\cdot2x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\in R\)

1 tháng 5 2017

a) Thử trực tiếp hoặc chịu khó phân tích thành nhân tử

từ đó ta kết luận 2 là nghiệm của 2 PT

b) Ta thay x=3 vào 2 PT

Thay x=3 là nghiệm của PT 1

x= 3 không là nghiệm của PT 2

c) hai phương trình không tương đương nhau vì x=3 không là nghiệm của PT 2

1 tháng 5 2017

a) Thay x=2 vào phương trình x2 -5x +6

ta được 22-5.2+6=0

Thay x=2 vào phương trình x+(x-2)(2x+1)

ta được 2+(2-2)(2.2+1)=2

Vậy x=2 là nghiệm của cả hai phương trình

Mk làm cách dễ vô cùng nhá

Xét phương trình : \(\(\(x^2-2mx-m^2-5=0\)\)\)(*)

Vì 3 là một nghiệm của phương trình nên thay vào ta được :

\(\(\(3^2-2.m.3-m^2-5=0\)\)\)

\(\(\(\Leftrightarrow9-6m-m^2-5=0\)\)\)

\(\(\(\Leftrightarrow-m^2-6m+4=0\)\)\)

\(\(\(\Leftrightarrow m^2+6m-4=0\)\)\)

Ta có \(\(\(\Delta^/=\left(3\right)^2-1.\left(-4\right)\)\)\)

\(\(\(=9+4=13\Rightarrow\sqrt{\Delta^/}=\sqrt{13}\)\)\)

\(\(\(\Rightarrow m_1=-3+\sqrt{13};m_2=-3-\sqrt{13}\)\)\)

Với \(\(\(m=-3+\sqrt{13}\Rightarrow x_1=3;x_2=-9+2\sqrt{13}\)\)\)

Với \(\(m=-3-\sqrt{13}\Rightarrow x_1=3;x_2=-9-2\sqrt{13}\)\)

K biết sai chỗ nào không ... bn xem lại nhá

20 tháng 6 2019

umk umk xin lỗi các bạn. Nhìn nhầm thành phương trình có 3 nghiệm :)

25 tháng 1 2020

Ta có  \(x^2-2x+2=\left(x-1\right)^2+1>0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)