Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có 2 nghiêm nguyên dương m, n. Khi đó mn=q, m+n=p, do q là số nguyên tố nên chỉ có 2 ước nguyên dương là 1, q. Do đó {m, n}={1; q}
Khi đó 1+q=p, do đó p, q khác tính chẵn lẻ, mà chỉ có 2 là số nguyên tố chẵn, do đó q=2, p=3
p²+q²=2²+3²=13 là số nguyên tố ( đọc)
Xét \(\Delta=p^2+4ap\inℕ^∗,\forall a,p\inℕ^∗\)
Để phương trình nhận nghiệm hữu tỉ thì \(\sqrt{\Delta}\)Phải là hữu tỉ hay có thể khẳng định rằng \(\Delta\)phải là số chính phương.
Ở đây ta chú ý rằng nếu x là số nguyên tố thì mọi số chính phương chia hết cho x buộc phải chia hết cho x2
( Điều này hiển nhiên khỏi chứng minh)
Vì \(\Delta⋮p\)mà p là số nguyên tố \(\Rightarrow\Delta=p^2+4ap⋮p^2\Rightarrow4a⋮p\)
---> Đặt \(4a=kp,k\inℕ^∗\)---> Thế vào \(\Delta\)
\(\Rightarrow\Delta=p^2+kp^2=p^2\left(1+k\right)\)là số chính phương khi và chỉ khi (1+k) là số chính phương
---> Đặt \(1+k=n^2\Rightarrow k=n^2-1,n\inℕ^∗\)---> Thế vào a
\(\Rightarrow a=\frac{\left(n^2-1\right)p}{4}\)
Thử lại: \(\Delta=p^2+4ap=p^2+\left(n^2-1\right)p^2=p^2.n^2=\left(pn\right)^2\)---> Là số chính phương
Kết luận: bla bla bla bla...... :)))
Có: \(\Delta=p^2+4>0\), mọi p
=> phương trình luôn có 2 nghiệm phân biệt .
Áp dụng định lí Viet ta có:
\(x_1+x_2=-p\)
\(x_1.x_2=-1\)
Ta cần chứng minh với n là số tự nhiên: \(S_{n+2}=-pS_{n+1}+S_n\) (1)
+) Với \(S_0=x_1^o+x_2^o=2\);\(S_1=-p\)
\(S_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=p^2+2=-pS_1+S_2\)
=>(1) đúng với n = 0.
+) G/s : (1) đúng với n
+) Chứng minh (1) đúng (1) đúng với n +1
Ta có: \(S_{n+1}=x_1^{n+1}+x_2^{n+1}=\left(x_1^n+x_2^n\right)\left(x_1+x_2\right)-x_1x_2\left(x_1^{n-1}+x_1^{n-2}\right)\)
\(=-pS_n+S_{n-1}\)
=> (1) đúng với n +1
Vậy với mọi số tự nhiên n: \(S_{n+2}=-pS_{n+1}+S_n\)(1)
G/s: \(\left(S_n;S_{n+1}\right)=d\)
=> \(\hept{\begin{cases}S_{n+1}=-pS_n+S_{n-1}⋮d\\S_n⋮d\end{cases}}\Rightarrow S_{n-1}⋮d\)
=> \(\hept{\begin{cases}S_n=-pS_{n-1}+S_{n-2}⋮d\\S_{n-1}⋮d\end{cases}}\Rightarrow S_{n-2}⋮d\)
.....
Cứ tiếp tự như vậy
=> \(S_0⋮d;S_1⋮d\)
=> \(\hept{\begin{cases}2⋮d\Rightarrow d\in\left\{\pm1;\pm2\right\}\\-p⋮d\Rightarrow d\in\left\{\pm1;\pm p\right\}\end{cases}}\)
Mà p là số lẻ
=> d =1
=> \(S_n;S_{n-1}\)là hai số nguyên tố cùng nhau.
Giả sử x 1 , x 2 la hai nghiệm của phương trình x 2 + px + q = 0
Theo hệ thức Vi-ét ta có: x 1 + x 2 = - p/1 = - p; x 1 x 2 = q/1 = q
Phương trình có hai nghiệm là x 1 + x 2 và x 1 x 2 tức là phương trình có hai nghiệm là –p và q.
Hai số -p và q là nghiệm của phương trình.
(x + p)(x - q) = 0 ⇔ x 2 - qx + px - pq = 0 ⇔ x 2 + (p - q)x - pq = 0
Phương trình cần tìm: x 2 + (p - q)x - pq = 0
gọi 2 nghiệm của pt là a,b (a,b thuộc Z).
Theo Viet: a + b = -p; a.b = q
p + q = 198 => -(a+b) + ab + 1 = 199 => (a-1)(b-1) = 199 = 199.1 = 1.199 = -199.-1 = -1. -199
Giải các hệ để tìm a,b
(1) a-1=199 ; b-1 = 1 hay a=200, b=2
(2) a-1=1 ; b-1 = 199 hay a=2; b=200
(3) a-1=-1; b-1 = -199 hay a=0,b=-198
(4) a-1=-199;b-1=-1 hay a=-198;b=0
Chắc pt đầu là x^2+mx+n (:))
Từ điều kiện ta có m khác p, n khác q
Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)
Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ
Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ
cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ
Để pt đã cho có nghiệm nguyên dương thì \(\Delta =p^2-4q\) là số chính phương.
Đặt \(p^2-4q=k^2\Leftrightarrow4q=\left(p-k\right)\left(p+k\right)\) với k là số tự nhiên.
Do p - k, p + k cùng tính chẵn, lẻ mà tích của chúng chẵn nên hai số này cùng chẵn.
Mặt khác p - k < p + k và q là số nguyên tố nên p - k = 2; p + k = 2q hoặc p - k = 4; p + k = q.
Nếu p - k = 4; p + k = q thì q chẵn do đó q = 2 (vô lí vì p + k > p - k).
Nếu p - k = 2; p + k = 2q thì 2p = 2q + 2 tức p = q + 1. Do đó q chẵn tức q = 2. Suy ra p = 3.
Thử lại ta thấy pt \(x^2-3x+2=0\) có nghiệm nguyên dương x = 1 và x = 2.
Vậy p = 3; q = 2.
ko bt