K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
7 tháng 1 2019

Lời giải:

Theo định lý Fermat nhỏ, với mọi snt $p,q$ mà $(p,q)=1$ ta luôn có:

\(\left\{\begin{matrix} p^{q-1}\equiv 1\pmod q\\ q^{p-1}\equiv 1\pmod p\end{matrix}\right.\)\(\left\{\begin{matrix} q^{p-1}\equiv 0\pmod q\\ p^{q-1}\equiv 0\pmod p\end{matrix}\right.\)

\(\Rightarrow \left\{\begin{matrix} p^{q-1}+q^{p-1}\equiv 1\pmod q\\ q^{p-1}+p^{q-1}\equiv 1\pmod p\end{matrix}\right.\)

Đặt \(p^{q-1}+q^{p-1}=qm+1=pn+1\)

\(\Rightarrow qm=pn\). Mà $(p,q)=1$ nên \(qm\vdots p\Rightarrow m\vdots p\). Đặt \(m=pm_1\)

Khi đó: \(p^{q-1}+q^{p-1}=qm+1=qpm_1+1\equiv 1\pmod {pq}\)

Ta có đpcm.

16 tháng 12 2017

Định lý Wilson

26 tháng 5 2018

Phương trình có 2 nghiêm nguyên dương m, n. Khi đó mn=q, m+n=p, do q là số nguyên tố nên chỉ có 2 ước nguyên dương là 1, q. Do đó {m, n}={1; q}

Khi đó 1+q=p, do đó p, q khác tính chẵn lẻ, mà chỉ có 2 là số nguyên tố chẵn, do đó q=2, p=3

p²+q²=2²+3²=13 là số nguyên tố ( đọc)

9 tháng 4 2022

Đặt \(n=4k+1\) thì \(P=\dfrac{\left(4k+1\right)\left(4k+2\right)\left(4k+4\right)\left(4k+6\right)}{2}=8\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.

Dẫn đến \(Q=\left(4k+1\right)\left(2k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.

Lại có \(\left(2k+1,4k+1\right)=1;\left(2k+1,k+1\right)=1;\left(2k+1,2k+3\right)=1\) nên \(\left(2k+1,\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\right)=1\).

Do đó để Q là số lập phương thì \(2k+1\) và \(R=\left(4k+1\right)\left(k+1\right)\left(2k+3\right)\) là số lập phương.

Mặt khác, ta có \(R=8k^3+22k^2+17k+3\) 

\(\Rightarrow8k^3+12k^2+6k+1=\left(2k+1\right)^3< R< 8k^3+24k^2+24k+8=\left(2k+2\right)^3\) nên \(R\) không thể là số lập phương.

Vậy...

9 tháng 4 2022

 Em cám ơn thầy nhiều lắm ạ!

10 tháng 1 2022

câu 2: 

Với p=2→2p+1=5p=2→2p+1=5 không là lập phương 11 số tự nhiên

→p=2→p=2 loại

→p>2→(p,2)=1→p>2→(p,2)=1

Đặt 2p+1=(2k+1)3,k∈N2p+1=(2k+1)3,k∈N vì 2p+12p+1 lẻ

→2p=(2k+1)3−1→2p=(2k+1)3−1

→2p=(2k+1−1)((2k+1)2+(2k+1)+1)→2p=(2k+1−1)((2k+1)2+(2k+1)+1)

→2p=2k(4k2+6k+3)→2p=2k(4k2+6k+3)

→p=k(4k2+6k+3)→p=k(4k2+6k+3)

Vì pp là số nguyên tố, 4k2+6k+3>k4k2+6k+3>k

→k=1→k=1 và 4k2+6k+34k2+6k+3 là số nguyên tố

→4k2+6k+3=13→4k2+6k+3=13 (Khi k=1k=1) là số nguyên tố

→k=1→k=1 chọn

→2p+1=27→2p+1=27

→p=13

câu 3: p−q+2q=(p−q)3→2q=(p−q)((p−q)2−1)=(p−q)(p−q−1)(p−q+1)p−q+2q=(p−q)3→2q=(p−q)((p−q)2−1)=(p−q)(p−q−1)(p−q+1)
Th1: p−qp−q chia hết cho 2 suy ra p−q=2kp−q=2k
Suy ra q=k.(2k−1)(2k+1)q=k.(2k−1)(2k+1)
Do vậy k=1k=1 vì nếu không thì qq thành tích 3 số nguyên lớn hơn 1 suy ra vô lý vì nó là nguyên tố.
Suy ra p−q=2p−q=2 Như vậy q=3,p=5q=3,p=5 Thỏa mãn
TH2: p−q−1p−q−1 chia hết cho 2 suy ra p−q−1=2tp−q−1=2t nên q=(2t+1)t(2t+2)q=(2t+1)t(2t+2)
Do vậy t=0t=0 vì nếu không thì qq thành tích 2 số nguyên lớn hơn 1.
Suy ra p−q−1=0↔p−q=1↔p=3,q=2p−q−1=0↔p−q=1↔p=3,q=2 thay vào đề loại.
TH3: p−q+1=2mp−q+1=2m suy ra q=(2m−1)(2m−2)mq=(2m−1)(2m−2)m
Nếu m≥2m≥2 suy ra qq thành tích 3 số nguyên lớn hơn 1 loại
Suy ra m=0,1m=0,1 thay vào đều loại.
Vậy p=5,q=3p=5,q=3

tick nha
10 tháng 1 2022

Nhìn là cũng biết e cop rùi :))

Khi cop nếu ko chú ý thì sẽ bị ra mỗi cái hai lần, mà e cũng thế.

=> Chứng tỏ cop. Quá chuẩn nhỉ?

NV
12 tháng 1 2022

1.

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b+c\right)\left(ab+bc+ca\right)-3abc\)

Do vế phải chia hết cho 3  \(\Rightarrow\) vế trái chia hết cho 3

\(\Rightarrow a+b+c⋮3\Rightarrow\left(a+b+c\right)^3⋮27\)

\(a+b+c⋮3\Rightarrow3\left(a+b+c\right)⋮9\)

\(\Rightarrow\left(a+b+c\right)^3-\left(a^3+b^3+c^3\right)-3\left(a+b+c\right)\left(ab+bc+ca\right)⋮9\)

\(\Rightarrow3abc⋮9\Rightarrow abc⋮3\)

2.

Đặt \(2p+1=n^3\Rightarrow2p=n^3-1=\left(n-1\right)\left(n^2+n+1\right)\) (hiển nhiên n>1)

Do \(n^2+n+1=n\left(n+1\right)+1\) luôn lẻ \(\Rightarrow n-1\) chẵn \(\Rightarrow n=2k+1\)

\(\Rightarrow2p=\left(2k+1-1\right)\left(n^2+n+1\right)=2k\left(n^2+n+1\right)\)

\(\Rightarrow p=k\left(n^2+n+1\right)\Rightarrow k=1\Rightarrow n=3\)

\(\Rightarrow p=13\)

12 tháng 1 2022

Tham khảo:

2, Với \(p=2->2p+1=5\) không là lập phương 1 số tự nhiên

\(->p=2\) loại

\(-> p>2->(p,2)=1\)

Đặt \(2p+1=(2k+1)^3, k∈ N,\)vì \(2p+1\) lẻ

\(->2p=(2k+1)^3-1\)

\(-> 2p=(2k+1-1)[(2k+1)^2+(2k+1)+1]\)

\(->2p=2k(4k^2+6k+3)\)

\(->p=k(4k^2+6k+3)\)

Vì \(p\)  là số nguyên tố, \(4k^2+6k+3>k\)

\(->k=1\) và \(4k^2+6k+3\) là số nguyên tố.

\(->4k^2+6k+3=13(\) khi \(k=1)\) là số nguyên tố

\(->k=1\) (chọn)

\(-> 2p+1=27\)

\(->p=13\)

11 tháng 11 2019

Bài này dễ thôi bạn !!!

Xét mọi p nguyên tố lẻ và p > 3=> p^2:3 dư 1 do 1 SCP : 3 dư 0 hoặc 1 và SCP đó không chia hết 3 do là SNT>3

=> 8p^2+1 chia hết cho 3 và > 3 do p > 3 => Là hợp số => Vô lí => Loại

Xét p=3 => 8p^2+2p+1=79 là SNT và 8p^2+1=73 là SNT lẻ (TMĐK)

=> ĐPCM.