K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NA
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HH
1
28 tháng 1 2020
BS đề bài : n thộc N*
P = n4+4 = n4+ 4n2+4 - 4n2
=(n2+2)2-(2n)2
=(n2-2n+2)(n2+2n+2)
Mà n2+2n+2 > n2- 2n+2( vì n thuộc N*)
\(\Rightarrow\)Để P là số nguyên tố thì n2 - 2n+2=1
\(\Rightarrow\)n2 - 2n+1=0
\(\Rightarrow\)(n - 1)2 = 0
\(\Rightarrow\)n - 1 = 0
\(\Rightarrow\)n = 1(thỏa mãn điều kiện trên)
Ta thử lại: Nếu n = 1 thì P = 14 + 4 = 5 là số nguyên tố (chọn)
Vậy n = 1
11 tháng 12 2016
Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa
19 tháng 3 2017
Câu 1:
Để B là số nguyên
=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}
Ta có bảng:
n-3 | 1 | 5 | -1 | -5 |
n | 4 | 8 | 2 | -2 |
B | 5 | 1 | -5 | -1 |
=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)
P=\(n^4+4=n^4+4n^2+4-4n^2=\left(n^2+2\right)-4n^2=\left(n^2-2n+2\right)\left(n^2+2n+2\right)\)
Để P là số nguyên tố thì:
TH1:\(\hept{\begin{cases}n^2-2n+2=1\\n^2+2n+2=n^4+4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}n\left(n-2\right)=-1\left(1\right)\\n^2+2n+2=n^4+4\left(2\right)\end{cases}}\).Giải phương trình (1) ta được n=1 thay vào phương trình 2 cũng thỏa mãn.Vậy x=1 thỏa mãn
TH2:\(\hept{\begin{cases}n^2+2n+2=1\\n^2-2n+2=n^4+4\end{cases}}\).Tương tự TH1 thì ta cũng có x=-1 thỏa mãn
Vậy...........................
BS đề bài : n thuộc N*
P = n4+4 = n4 + 4n2 + 4 - 4n2
= (n2 + 2)2 - (2n)2
= (n2 - 2n +2)(n2 + 2n + 2)
Mà n2 + 2n +2 > n2 - 2n +2 ( vì n thuộc N*)
\(\Rightarrow\)Để P là số nguyên tố thì n2 - 2n + 2 = 1
\(\Rightarrow\)n2 - 2n +1 = 0
\(\Rightarrow\)(n - 1)2 = 0
\(\Rightarrow\)n - 1 = 0
\(\Rightarrow\)n = 1 ( thỏa mãn điều kiện )
Thử lại : Với n=1 thì P = 14 +4 = 5 là số nguyên tố ( chọn )
Vậy n = 1