K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

P>3 suy ra P có dạng 3k+1 hoặc 3k+2

nếu P=3k+1 thì P+14=3k+1+14=3k+15 là hợp số (trái đề bài)

nếu P=3k+2 thì P+14=3K+2+14=3K+16 có thể là số nguyên tố(chọn)

             P+7=3k+2+7=3k+9 là hợp số(đpcm)

8 tháng 1 2016

chưa đủ bạn ơi còn nhiều số nữa hãy gắng suy nghĩ giúp mình đi

8 tháng 1 2016

số 3;5;9 nha bạn

 

28 tháng 10 2017

ý bn là chia hết cho 31 hả ?

28 tháng 10 2017

đây là câu chia hết cho 31 nhé , em ghi nhầm

18 tháng 10 2020

https://olm.vn/hoi-dap/detail/227275074177.html

18 tháng 10 2020

Hai số nguyên tố cùng nhau là 2 số liền nhau và có UCLN và BCNN =1

Mà 2 số nguyên tố cùng nhau chỉ có một đó là 2;3

=>p=2+3

p=5

Mà 5 cũng là số nguyên tố

Vậy khi a và b là 2 số nguyên tố cùng nhau thì a+b sẽ ra được một số nguyên tố

Học tốt

28 tháng 12 2023

Câu 1: Vì p và 10p + 1 là các số nguyên tố lớn hơn 3 nên p ≠ 2 vậy p là các số lẻ.

Ta có: 10p + 1 - p  = 9p + 1 

      Vì p là số lẻ nên 9p + 1 là số chẵn ⇒ 9p + 1 = 2k

          17p + 1 = 8p + 9p + 1   = 8p + 2k = 2.(4p + k) ⋮ 2

        ⇒ 17p + 1 là hợp số (đpcm)

      

AH
Akai Haruma
Giáo viên
28 tháng 12 2023

Câu 1: 

Vì $p$ là stn lớn hơn $3$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$.

Nếu $p=3k+2$ thì:

$10p+1=10(3k+2)+1=30k+21\vdots 3$

Mà $10p+1>3$ nên không thể là số nguyên tố (trái với giả thiết)

$\Rightarrow p$ có dạng $3k+1$.

Khi đó:
$17p+1=17(3k+1)+1=51k+18=3(17k+6)\vdots 3$. Mà $17p+1>3$ nên $17p+1$ là hợp số
 (đpcm)

4 tháng 11 2017

số nguyên tố đó là số 7. Vì:

7+6=13 là số nguyên tố

7+12=19 là số nguyên tố

7+18=25 là số nguyên tố

7+24=31 là số nguyên tố

TK mk nếu thấy đúng mn nha

4 tháng 11 2017

Bạn kia làm đúng roi nha ban

k tui nha

thanks

Với p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3

 \(\Rightarrow\)p có dạng 3k+1 và 3k+2

+) Với p=3k+1

Khi đó: 2p+7 = 2(3k+1)+7 = 6k+2+7 = 6k+9

Mà 6k+9 > 3 nên 6k+9 chia hết cho 3 hay 2p+7 là hợp số ( không thỏa mãn yêu cầu đề bài )

+) Với p=3k+2

Khi đó: 2p+7 = 2(3k+2)+7 = 6k+4+7 = 6k+11 - Là số nguyên tố ( thỏa mãn )

             4p+7 = 4(3k+2)+7 = 12k+8+7 = 12k+15

Mà 12k+15 > 3 nên 12k+15 chia hết cho 3 hay 4p+7 là hợp số ( thỏa mãn )

Vậy ...

_HT_

3 tháng 2 2022

em chịu

28 tháng 12 2021

Ho

28 tháng 12 2021

???

10 tháng 1

Bài 1:

Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

vậy p + 1 và p -  1 là hai số chẵn.

Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.

đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)

A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1) 

Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.

⇒ 4.k.(k + 1) ⋮ 8 

⇒ A = (p + 1).(p - 1) ⋮ 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng:

   p = 3k + 1; hoặc p = 3k + 2

Xét trường hợp p = 3k + 1 ta có:

  p - 1 = 3k + 1  - 1  = 3k ⋮ 3

⇒ A = (p + 1).(p - 1) ⋮ 3  (2)

Từ (1) và (2) ta có:

A ⋮ 3; 8  ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24

⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)

Xét trường hợp p = 3k + 2 ta có

p + 1 = 3k + 2 + 1  = 3k + 3 = 3.(k + 1) ⋮ 3 (3)

Từ (1) và (3) ta có: 

A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24 

⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)

Kết hợp (*) và(**) ta có

\(⋮\) 24 (đpcm)

 

 

  

 

 

10 tháng 1

Cảm ơn cô