Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))
Thay p=3k+1 vào 2p+1 ta có:
2p+1=2(3k+1)+1=6k+2+1=6k+3
Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)
=> 2p+1 là hợp số (loại)
Thay p=3k+2 vào 2p+1 ta có:
2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)
Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
là số nguyên tố vì p là nguyên tố
=>4p chia hết cho 2 và 4 mà 1 lại không chia hết cho 2 và 4
=> 4p+1 không chia hết cho 2 và 4
=>4p+1là số nguyên tố
nhớ k cho mk nha
Cho p là một số nguyên tố lớn hơn 3 và 2p + 1 cũng là một số nguyên tố, thì 4p + 1 là số nguyên tố hay hợp số? Vì sao?
p và 2p+1 nguyên tố
Nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
Xét p chia hết cho 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
Kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố chia hết cho 3
Vì p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2
Với p = 3k+1 => 2p+1 = 2(3k+1) + 1 = 6k + 2 + 1 = 6k + 3 \(⋮\) 3 và lớn hơn 3
=> 2p+1 là hợp số (loại)
=> p chỉ có dạng 3k+2
Với p = 3k+2 => 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 \(⋮\) 3 và lớn hơn 3
=> 4p+1 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là một số nguyên tố thì 4p+1 là hợp số.
Bài 1:
a) Các số nguyên tố là 37;67 vì mỗi số này chỉ có hai ước là 1 và chính nó
b) Các số là hợp số là 57;77 và 87 vì mỗi số này có nhiều hơn 2 ước
Câu 2:
a) \(17\cdot19+23\cdot29\) là hợp số
b) \(5\cdot8-3\cdot13\) không là số nguyên tố cũng không là hợp số
c) \(143\cdot144\cdot145-145\cdot144\cdot143\) không là số nguyên tố cũng không là hợp số
p100 - 1 = ( p - 1 )( p99 + p98 + ... + p+1)
Như vậy p100 - 1 là hợp số ( có ít nhất 3 ước )
Nếu sai bạn thông cảm nha
Với p = 2 ta có: p100−1=2100−1; (−1)100−1=0
=> 2100−1⋮3;2100−1>3
nên p100−1 là hợp số
Với p > 2; p nguyên tố => p lẻ => p100 lẻ => p100 -1 là số chẵn và p100 > 2
=> p100 - 1 là hợp số
Vậy p100 - 1 là hợp số
HT
mình cũng không chắc, nếu sai mong bạn thông cảm