\(2^p+p^2\) là số nguyên tố

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
3 tháng 1 2024

- Xét với \(p=2\Rightarrow2^p+p^2=8\) ko phải SNT

- Xét với \(p=3\Rightarrow2^p+p^2=17\) là SNT (thỏa mãn)

- Xét với \(p>3\Rightarrow2^p+p^2>3\) đồng thời \(p^2\) chia 3 dư 1 (1)

Đồng thời \(p>3\) nên p lẻ \(\Rightarrow p=2k+1\Rightarrow2^p=2^{2k+1}=2.4^k\)

Mà \(4\equiv1\left(mod3\right)\Rightarrow2.4^k\equiv2\left(mod3\right)\) hay \(2^p\) chia 3 dư 2 (2)

(1);(2) \(\Rightarrow2^p+p^2\) chia hết cho 3 \(\Rightarrow2^p+p^2\) không phải SNT

Vậy \(p=3\) là giá trị duy nhất thỏa mãn yêu cầu

16 tháng 9 2017

xét p=2 , 5 thỏa mãn .

xét p=3 ko thỏa mãn

xét p>5 => ko thỏa mãn 4p^2+1 và 6p^2 +1 là snt

23 tháng 11 2014

2) vì abc + def chia hết cho 37 nên : 1000 abc + 1000 def cũng chia hết cho 37 => 1000 abc + def + 999 def cũng chia hết cho 37

mà ta thấy 999def chia hết cho 37 nên (1000 abc + def ) cũng chia hết cho 37 hay abcdef  chia hết cho 37

vậy abcdef là hợp số => ( đpcm ) 

29 tháng 3 2016

vì p là sntố

+,p=2 thì 2^2+2^2=8 là hợp số

+,p=

3 tháng 3 2020

Bài 2 :

Tham khảo nha bạn !

Giả sử a≤b≤c⇒ab+bc+ca≤3bca≤b≤c⇒ab+bc+ca≤3bc. Theo giả thiết abc<ab+bc+caabc<ab+bc+ca (1) nên abc<3bc⇒a<3abc<3bc⇒a<3 mà a là số nguyên tố nên a = 2. Thay a = 2 vào (1) được 2bc<2b+2c+bc⇒bc<2(b+c)2bc<2b+2c+bc⇒bc<2(b+c) (2)

Vì b≤c⇒bc<4c⇒b<4b≤c⇒bc<4c⇒b<4. Vì b là số nguyên tố nên b = 2 hoặc b = 3. Với b = 2 thay vào (2) được 2c < 4 + 2c đúng với mọi c là số nguyên tùy ý. Với b = 3 thay vào (2) được c < 6 nên c = 3 hoặc c = 5

            Vậy (2; 2; c), (2; 3; 3), (2; 3; 5) với c là số nguyên tố tùy ý

3 tháng 3 2020

Vì a,b,c có vai trò như nhau. Giả sử a<b<c

Khi đó ab+bc+ca =< 3bc

=> abc<3bc => a<3 => a=2 (vì a là số nguyên tố)

Với a=2, ta có:

2bc < 2b+2c-bc =< 4c 

=> b<4 => b=2 hoặc b=3

Nếu b=2 thì 4c<2+4c thỏa mãn với c là số nguyên bất kì

Nếu b=3 thì 6c<6+5c => c<6 => c=3 hoặc c=5

Vậy các cặp số (a,b,c) cần tìm là: (2;2;p);(2;2;3);(2;3;5) và các hoán vị của chúng với p là số nguyên tố

27 tháng 11 2017

Có : \(n^2+12n=n.n+12.n=n.\left(12+n\right).\)

26 tháng 11 2017

Có : n^2+12n = n.(n+12)

=> đế n^2+12n là số nguyên tố => n=1 hoặc n+12 = 1

=> n=1 ( vì n thuộc N )

Khi đó : n^2+12n = 1^2+12.1 = 13 nguyên tố ( tm)

Vậy n = 1

k mk nha

13 tháng 4 2016

Xét hai trường hợp:

+)         p £ 3 <=> p = 2 hoặc p = 3

* Nếu p = 2 => 2p + p2 = 22 + 22 = 8 Ï P

* Nếu p = 3 => 2p + p2 = 22 + 32 = 17  P

            +)         p > 3 ta có 2p + p2=(p2 – 1) + (2p + 1)

            vì p lẻ =>         (2p + 1)  3

            và p2 – 1 = (p + 1)(p – 1)  3 => 2p + p2 Ï P 

            Vậy: Có duy nhất 1 giá trị p = 3 thoả mãn bài ra.

16 tháng 2 2019

1+1=2hay3hay4

Đúng hay sai.

nguyen van viet 

1+1=2 

  đúng đó 

       ĐS:2

   học tốt!!!

11 tháng 12 2016

P là số nguyên tố và p>3 => p+5, p+7 là sô chẵn đặt p+5=2k=> p+7=2k+2=>(p+5)(p+7)= 2k(2k+2)= 2k2(k+1)= 4k(k+1) chia hết cho 8 

( vì k(k+1) chia hết cho 2 với mọi k thuộc n) 

P là số nguyên tố lớn hơn 3 nên p có dạng 3n+1 hoặc 3n+2

. Xét P= 3n+1=> (p+5)(p+7)= (3n+6)(3n+8) chia hết cho 3 với mọi n thuộc N

. xét p=3n+2=> (p+5)(p+7)= (3n+7)(3n+9) chia hét cho 3 với mọi n thuộc N

(p+5)(p+7) chia hết cho 8 và 3=> (p+5)(p+7) chia hết cho 24

26 tháng 3 2017

cho p là số nguyên tố lớn hơn 3.chứng minh (p+5)(p+7) chia hết cho 24 
các bạn giải hộ mình vs

20 tháng 7 2016

\(a=p_1^m.p_2^n\Rightarrow a^3=p_1^{3m}.p_2^{3m}.\) Số ước của \(a^3\)là ( 3m + 1 ) ( 3n + 1 ) = 40 , suy ra m = 1 , n = 3 ( hoặc m = 3 , n = 1 )

Số \(a^2=p_1^{2m}.p_2^{2n}\) có số ước là ( 2m + 1 ) ( 2n + 1 ) = 3 . 7 = 21 ( ước )

ủng hộ mk nhé k nhiều vô .

19 tháng 3 2017

Câu 1:

Để B là số nguyên

=>5 chia hết cho n-3 hay n-3 thuộc vào Ư(5)={1;5;-1;-5}

Ta có bảng:

n-315-1-5
n482-2
B51-5

-1

=> n thuộc vào {4;8;2;-2} (thỏa mãn điều kiện n thuộc Z)