K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2021

5

25 tháng 11 2021

5

1 tháng 12 2016

Số nguyên tố lớn hơn 3 sẽ có dạng 3k + 1  hay 3k + 2 ( k \(\in\)N )

Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3( k + 1 ) là số nguyên tố

Vì 3( k + 1 ) chia hết cho 3 nên dạng  p = 3k + 1 không thể có

Vậy p có dạng 3k + 2 ( Vậy, p + 2 = 3k + 2 + 2 = 3k + 4 là 1 số nguyên tố )

=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3( k+1 ) chia hết cho 3

Mặt khác p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ

=> p + 1 là 1 số chẵn 

=> p + 1 chia hết cho 2

Vì p chia hết cho cả 2 và 3 mà ƯCLN( 2; 3 ) = 1 

=> p + 1 chia hết cho 6

28 tháng 6 2015

p là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2

- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.

- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.

 => đpcm

  tick đúng cho tớ với !

17 tháng 12 2015

Tp là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2

- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.

- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.

 => đpcm

  tick đúng cho tớ với !

9 tháng 6 2017

p=5

p = 11

p = 17

Chia hết hết cho 6 khi cộng 1

9 tháng 6 2017

p là số nguyên tố lớn hơn 3 nên p là số lẻ , do đó p + 1 \(⋮\)2 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng p = 3k + 1 hoặc p - 3k + 2 (k \(\in N\))

Nếu p = 3k + 1 thì p + 2 = 3k + 3 \(⋮\)3 và p + 2 > 3 nên p + 2 là hợp số . Vậy p = 3k + 2 , khi đó p + 1 = 3k + 3 \(⋮\)3 (2)

Từ (1) và (2) => p + 1 \(⋮\)2.3 hay p + 1 \(⋮\)

17 tháng 12 2015

Tp là số nguyên tố lớn hơn 3 nên p = 2k + 1 hoặc p = 2k + 2

- Nếu p = 2k + 1 => p + 2 = 2k + 3,là số nguyên tố nếu p không là bội của 3. Do đó p + 1 = 2k + 2 chia hết cho 6.

- Nếu p = 2k + 2 => p + 2 = 3k + 4 là hợp số, loại.

 => đpcm

  tick đúng cho tớ với !

17 tháng 12 2015

vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 và p lẻ
Nếu p có dạng p=3k+1 => p+2=3(k+1) là hợp số -> Loại
vậy p có dạng 3k+2
=> p+1=3(k+1) chia hết cho 3
vì p lẻ nên p+1 chẵn => p+1 chia hết cho 2
=> p chia hết cho 6

Ba số tự nhiên liên tiếp là p ; p + 1 và p + 2 

Vì p và p + 2 đều là số nguyên tố nên số ở giữa p + 1 phải chia hết cho 2 ( 1 ) 

Mà 3 số tự nhiên liên tiếp phải có 1 số chia hết cho 3. Vì 2 số kia là số nguyên tố 

=> p + 1 chia hết cho 3 ( 2 ). Từ ( 1 ) ( 2 ) => p + 1 chia hết cho 2 và 3 <=> p + 1 chia hết cho 6

p là số nguyên tố lớn hơn 3 nên p lẻ, do đó p+1⋮⋮2 (1)

p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2.

Dạng 3k+1 không xảy ra.

Dạng 3k+2 cho ta p+1⋮3 (2).

Từ (1) và (2) cho ta p+1⋮6