K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Haizz , bạn phải ghi rõ đề chứ , mình sẽ đưa bạn 1 bài mẫu

Cho p và p+8 là các số NT >3 , Cm p+100 là hợp số !

Giải : Vì p và p+8 là các số NT >3 suy ra p không chia hết cho 3 , suy ra p có dạng là 3k+1 hoặc 3k+2

TH1 : Nếu p= 3k+1 thì p+8 = 3k+1+8=3k+9 chia hết cho 3 ( loại vì p+8 là số Nguyên Tố )

TH2 : Nếu p = 3k+2 thì p+8 = 3k+10 không chia hết cho 3 

Suy ra p có dạng là 3k+2

Vậy p+100 = 3k+102 chia hết cho 3

Suy ra ĐPCM

Câu 1: 

a: p=3 thì 3+2=5 và 3+10=13(nhận)

p=3k+1 thì p+2=3k+3(loại)

p=3k+2 thì p+10=3k+12(loại)

b: p=3 thì p+10=13 và p+20=23(nhận)

p=3k+1 thì p+20=3k+21(loại)

p=3k+2 thì p+10=3k+12(loại)

2.

p là số nguyên tố > 3 => p lẻ p + d là số nguyên tố => p + d lẻ mà p lẻ => d chẵn => d chia hết cho 2 +) Xét p = 3k + 1 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + 2d = 3k + 1 + 2. (3m +1) = 3k + 6m + 3 chia hết cho 3 => không là số nguyên tố Nếu d chia cho3 dư 2 => d = 3m + 2 => p +d = 3k + 1 + 3m + 2 = 3k + 3m + 3 => p + d không là số nguyên tố => d chia hết cho 3 +) Xét p = 3k + 2 Nếu d chia cho 3 dư 1 => d = 3m + 1 => p + d = 3k + 2 + 3m + 1 = 3k + 3m + 3 => p + d không là số ngt Nếu d chia cho 3 dư 2 => d = 3m + 2 => p + 2d = 3k + 6m + 6 => p + 2d không là số ngt => d chia hết cho 3 Vậy d chia hết cho cả 2 và 3 => d chia hết cho 6

NV
1 tháng 3 2023

Do p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3

\(\Rightarrow\) p có dạng \(p=3k+1\) hoặc \(p=3k+2\) với k là số tự nhiên và \(k\ge1\)

Nếu \(p=3k+1\Rightarrow p+2=3k+3=3\left(k+1\right)⋮3\) là hợp số (ktm)

\(\Rightarrow p=3k+2\)

Khi đó \(4p+1=4\left(3k+2\right)+1=12k+9=3\left(4k+3\right)⋮3\) là hợp số (đpcm)

câu hỏi đâu có liên quan đến toán lớp 6

a) Vì p lớn hơn 3 nên p ko chia hết cho 3

=> ta có: p=3k+1 hoặc 3k+2

Xét p=3k+1=>p+2=3k+1+2=3.3(k+1) chia hết cho 3

=>p+2 là hợp số(vô lý)

=>p=3k+2

=>p+1=3k+3=3(k+1)

p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2

Vì (3,2)=1=>p+1 chia hết cho 6

6 tháng 12 2017

không biết

3 tháng 11 2015

Vì p là số nguyên tố lớn hơn 3

=>p có 2 dạng 3k+1 và 3k+2

*Xét p=3k+1=>5p+1=5.(3k+1)+1=5.3k+5+1=3.5k+6=3.(5k+2) là hợp số(loại)

*Xét p=3k+2=>5p+1=5.(3k+2)+1=5.3k+10+1=3.5k+11=3.(5k+3)+2

Khi đó: 7p+1=7.(3k+2)+1=7.3k+14+1=3.7k+15=3.(7k+5) là hợp số

Vậy 7p+1 là hợp số 

TH1: p=3k+1

=>p+2=3k+3(loại)

=>p=3k+2 và p là số lẻ

p+1=3k+3=3(k+1) chia hết cho 3

p là số lẻ

=>p+1 chia hết cho 2

=>p+1 chia hết cho 6